US009081596B2

a2 United States Patent
Maeda et al.

US 9,081,596 B2
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54) INFORMATION PROCESSING DEVICE,
VIRTUAL MACHINE CREATION METHOD,
AND APPLICATION DISTRIBUTION SYSTEM
(75) Inventors: Manabu Maeda, Osaka (JP); Hideki
Matsushima, Osaka (JP); Tomoyuki
Haga, Nara (JP); Kenneth Alexander
Nicolson, Hyogo (JP)
(73)

Assignee: Panasonic Intellectual Property

Management Co., Ltd., Osaka (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 360 days.

@
(22)

Appl. No.: 13/515,384

PCT Filed: Mar. 8, 2011

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/IP2011/001343

Jun. 12,2012

PCT Pub. No.: 'WO02011/114655
PCT Pub. Date: Sep. 22,2011

87

(65) Prior Publication Data

US 2012/0260250 A1 Oct. 11, 2012

(30) Foreign Application Priority Data

Mar. 16,2010 (IP) woooooeeeoeeoeeeceee. 2010-059890
(51) Int.CL
GOGF 9/455
GOGF 9/48
GOGF 21/53
USS. CL
CPC

(2006.01)
(2006.01)
(2013.01)
(52)
GOGF 9/45533 (2013.01); GOGF 9/4843
(2013.01); GOGF 21/53 (2013.01); GO6F
2009/45562 (2013.01); GOGF 2009/45587
(2013.01)

1011 1001

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

1/2009 Yamadaetal. 709/207
3/2009 Kanemura et al.

(Continued)

7,478,136 B2*
7,503,049 B2

FOREIGN PATENT DOCUMENTS

JP 2004-252629
JP 2005-011336

9/2004
1/2005

(Continued)
OTHER PUBLICATIONS

International Search Report issued Apr. S, 2011 in International
(PCT) Application No. PCT/JP2011/001343.

(Continued)

Primary Examiner — Camquy Truong

Assistant Examiner — Mehran Kamran

(74) Attorney, Agent, or Firm — Wenderoth, Lind & Ponack,
L.L.P.

(57) ABSTRACT

A device (110) according to an implementation of the present
invention, having a plurality of virtual machines (1002, 1003,
1004, and 1005), includes a virtualization software (1001)
which manages the virtual machines. The virtualization soft-
ware includes an application VM creating unit (1300) which
creates a virtual machine for executing a program. A first
virtual machine (1002) determines whether a first program is
to be executed on the first virtual machine or to be executed on
a virtual machine other than the first virtual machine. When
the first virtual machine determines that the first program is to
be executed on the other virtual machine, the application VM
creating unit creates a second virtual machine for executing
the first program.

13 Claims, 25 Drawing Sheets

Upiversat Virtuatization
05 software

Application DL
VMOS application

Reguest to
create VM

51102,

S1106.

Execute

application and chitd

refationship

Register parent

Execute
>

Cend Cna

US 9,081,596 B2
Page 2

(56)

8,151,263

8,185,893

8,296,759
2003/0037105
2005/0172294
2006/0122962
2007/0089111
2008/0104608
2008/0134176
2008/0163210
2009/0125901
2009/0125902
2009/0172660
2009/0172781
2009/0172820
2009/0193399
2009/0313620
2010/0017512
2010/0017592
2010/0235828
2011/0055714
2011/0061050
2011/0138441
2011/0191610

References Cited

U.S. PATENT DOCUMENTS

BL*
B2 *
BL*
Al

Al*
Al*
Al*
Al*
Al*
Al*
Al

Al*
Al

Al*
Al*
Al

Al

Al*
Al*
Al*
Al*
Al*
Al*
Al*

4/2012
5/2012
10/2012
2/2003
8/2005
6/2006
4/2007
5/2008
6/2008
7/2008
5/2009
5/2009
7/2009
7/2009
7/2009
7/2009
12/2009
1/2010
1/2010
9/2010
3/2011
3/2011
6/2011
8/2011

........ 718/1
. 718/1
. 718/1

Venkitachalam et al.
Hyser etal.
Hutchins et al.
Yamada et al.

Kanemura et al.

............ 718/107

Ushiku 707/1
Robinson et al. ... 718/1
Hyser et al. 718/105
Fitzgerald et al. .. 718/1
Bowman et al. 718/1
Swanson

Ghoshetal.ccccovvvvrnne 718/1
Klotz, Ir. et al.

Masuoka et al.c...... 726/3
Watsonocovvveeeinnnnn, 726/26
Mitran et al.

Sedukhin et al.

Ciano et al. 709/225
Yamada 71372
Nishimura et al. 717/174
Vemulapalli et al. 715/739
Sahita et al. 718/1
Neystadtetal. 726/1
Agarwal et al. 713/310

2013/0055396 Al*
2013/0290958 Al* 10/2013 Ansel
2013/0346976 Al* 12/2013 Robinson et al.

2/2013 Wangetal. ... 726/24
. 718/1
................. 718/1

FOREIGN PATENT DOCUMENTS

JP 2006-163840 6/2006

JP 2006-172463 6/2006

JP 2008-165795 7/2008

WO 2008/117411 10/2008
OTHER PUBLICATIONS

Takehiro Nakayama et al., “OSTI Technology for Open and Secure
Mobile Terminals”, NTT DoCoMo Technical Journal, vol. 15, No. 1,
pp. 50-54, Apr. 1, 2007 (with its English version).

Hiroshi Yamada et al., “A VMM-level Approach to Shortening the
downtime of Operating Systems’ Reboots”, IPSJ SIG Technical
Reports, [CD-ROM], vol. 2009-0S-112, No. 2, Oct. 15, 2009, pp.
1-9.

“Open and Secure Terminal Initiative(OSTI), Architecture Specifi-
cation, Revision 1.00”, Intel Corporation and NTT DoCoMo, Inc.,
Oct. 16, 2006.

Extended European Search Report issued Nov. 13, 2014 in corre-
sponding Furopean Application No. 11755848.6.

* cited by examiner

U.S. Patent Jul. 14, 2015 Sheet 1 of 25 US 9,081,596 B2

FIG. 1
100
Appiication distribution system \‘\
Application distribution server
Apparatus for, e U
¢ 130 development :
; \ 110, :
: S\ :
Device
: 111 :
Device|

US 9,081,596 B2

Sheet 2 of 25

Jul. 14, 2015

U.S. Patent

SO BN0BG

TOIT

HUN 1004 sinleg

Z011

(QUBWIUOHALD 24N2335)
JUBLUUCHALD

/Eowujumxw SLEMIOS 34N035 \\

4

0011

e

¢ DI

UOIINIDXD JIBMYOS |BLLUICH

{JUBWILOHAUS |BLLLION)
JDWILOIAUD

/

921ADC]

F T T L

I

US 9,081,596 B2

2IEMYOS UCHRZIRNIIA

Sheet 3 of 25

Jul. 14, 2015

U.S. Patent

SIBMPIBY |BNIIA DIEMPIBY BNLLA w DIEMPIBY 1BNIHA BIBMPIRL |RTIAA !
» Ov0T - 0EOT 0201
: | asown B xsown |F] |
: S01d 1] uoneoyady] uvomesyday || SO [BSI9AUN |
L TP0T i i] §
: | N b N ¥ _ uopesydde |
: SARMIJOS o % [. s % \ |
: 14 A uoneondde g] x voneoydde 1 B J04JU0D |
' B3 2 i B % L Y 1 !
] i Ud “ | ” ! , | uoneoyddy ijuoneonddy pEOUMOG |
: | zeoT | zZ01 | S o
Zv01 | 20 | AL | RRGH €107 2101 |
¢ BUIORW jBnlA Y suiydewl jenlaA] suiydeW {eniin (E BUILORLU {BNLIA
G001 00T £001 zZ001"
{USLWIUOLAUD [BULION)
/ JUDLIUCIAUD UCIINDDXS 2IBMIOS [RULION \
0001

€ Did

US 9,081,596 B2

Sheet 4 of 25

Jul. 14, 2015

U.S. Patent

AJOUID PyrETTE YT 157 WBisAg
{ED BUOYJ BINDVS |BUIAIU]
SOLY 70T nun
100G 3In0ag
T _ g uonediddy 01T~
. 10T aoiaap abeioys
A uonedydde SO 240995 DIIIRIOALON
. P _ v uonedddy & uopeodde
CEDT :
€107~ 1ot —
o Mwﬂﬁ\f uoneddde POZL .> A evZl-
HESHAOY [0AILOD PROJUMO(3 . X uonedydde
_ . nun BuDMs . _ 10
1€01 434! JUBLILOHALD il sm\ﬁ P71
X uogesidde g ‘ Honoox3 coctr
e SO [esiantun 374 Sl WA Bunnooxs
2Z01 «< Nd2 -gonedddy
1101 < > 1ozt
XSOWA |4 le e
uopedyddy S1eMyas 7 ,
uonezienlun p 4] 224
1201 1001 ot
oz
A
S A
111 011
v 'Dld

U.S. Patent Jul. 14, 2015 Sheet 5 of 25 US 9,081,596 B2

FIG. 5

120
Application distribution server
- 2000
Application
holding unit
2001 /\ .-2002
Application Application
reception transmission
processing unit processing unit

US 9,081,596 B2

Sheet 6 of 25

Jul. 14, 2015

U.S. Patent

A

Bun e yun
Buneain iy Jun buploy s Buneisuab
ucnemnBlyuoy died Ad ared Amd
T00€ - Z200€ T E00E
jun un
Buissazoid | Buneisusb
bngag abeyoryg
PO0E 000€
Hun
bussaoosd
peodn
uswdoasp
103 smeseddy 500t
oeT
9 'OlId

US 9,081,596 B2

Sheet 7 of 25

Jul. 14, 2015

U.S. Patent

uoneanbuuon)

i3

0g1g

P a—

abeyosed

: AD
134035

PEOIIMO

0TIe

A

=Talew:

j00}
uorRiausb | U (= Jandwon
2BeYoed
01e T0TE 001E 7

Hun bunessushb abeoed

A

000g "

L "DId

=l ¥ alel

011E

U.S. Patent Jul. 14, 2015 Sheet 8 of 25 US 9,081,596 B2

FI1G. 8
_-3120
Download package
..... 3200
Application
-3201
Device driver
3202
Configuration file
...... 3203
Application signature list
55555 3204
Public key certificate

U.S. Patent Jul. 14, 2015 Sheet 9 of 25 US 9,081,596 B2

FIG. 9
1901 1;02 1;01 1102
Virtualization ‘ | Securé
software IPL Secure 05 boot unit
i
Initialize
; Execute o 5;991
S1000 Gast S
Load secure
boot unit
Execute o 5%?02
Verify secure
mode software
L NQ
51004} yerify virtuatization
isoftware
514086
S HO OK?
Set secure boot \
. YES |
fmhneﬂég ndl $1005
Load virtualization
software
< Execute

End End End End

U.S. Patent Jul. 14, 2015 Sheet 10 of 25 US 9,081,596 B2

FIG. 10
10}31 10}02 1003 10{05
Virtualization Virtual Virtual Virtuat
software machine maching machine
v _
Initialize I
/| Execute 51011
51010 >
Initialize
Eﬂntermpt process
Execute N S%’le
Initialize E
» interrupt process
Execute . S1013

Start application
- 51014
application? '

YES

Request
to create VM NO
_§1016
. Execute
Create VM application
Execute - SI}) 1/
$1015 ——
Initialize
bxeacute DL
application
End
< " 51018
Send notice of
end of VM -

End End End End

US 9,081,596 B2

Sheet 11 of 25

Jul. 14, 2015

U.S. Patent

31MPOS LOIIRZIBNIHIA

Y0OET -

Hun
Buibeuews ADi04

uun duibeueus
diysuoie;ad

jun Bueigo
WA BUBNDaXs

pPliyo> pue jusued ~uonesyddy
ST Qg
K
UM JOU0D Bun Hun
158nha. Buibousiy |« Buneals WA
ssao0sd SO WA uonesyddy
goer~" | A goer~T{ A oogrT | 4
1001 .
L 2 ¥
11 '9Id

U.S. Patent Jul. 14, 2015 Sheet 12 of 25 US 9,081,596 B2
FIG. 12
Application-executing VM . 1241
Header information 1310
VM main portion § -1311
..... 1315
0S5
..... 1316
Virtual hardware
-------- 1312
Verification value
FIG. 13
1350
iD Status Memory Destination for storing
suspension state
1 Running 10x52000 ~ 0x62000 0x10000
N |Suspendedi OxAGQ00 ~ OxBOOOO Ox10500

U.S. Patent Jul. 14, 2015 Sheet 13 of 25 US 9,081,596 B2

FIG. 14
1360
Parent virtual machine ID | Child virtual machine ID
1
i
2 5
FIG. 15A
L1370
Function Virtual machine 1D
TV viewing 1
Phone call 2
Play back of 0
commercial content

US 9,081,596 B2

Sheet 14 of 25

Jul. 14, 2015

U.S. Patent

JUIUOD (BIDUBUILWIOD

ON S3A ON
10 oeq Aeid
ON O SaA DUIMBIA AL
W SUIUDIRL JBNLIA 7 QUIUDBRW IBNJHALTT SURYDRUW JBNMIA LoIouUng

1LET 7

g51 "Dld

U.S. Patent Jul. 14, 2015 Sheet 15 of 25 US 9,081,596 B2

FIG. 16
.--1011
Universal 0%

1400 1401 1402
Application Application V.M. 05 Device
foad unit PTOCESS Feceiving driver A

unit
)
¥ ¥
FIG. 17A
1400
Application load unit
1412

1410 1411 7 Load unit
Application T, /
obtaining » S:;ermmmg 1413
unit \ VM creation

requesting
unit

U.S. Patent

Jul. 14, 2015 Sheet 16 of 25

FIG. 178

1400

Application load unit
1412

1411 / Load unit
Determining
unit 1413
VM creation
requesting

unit

FIG. 18A

L1021

Application VMOSX

1500 1501

CS process
requesting >
unit

Device
driver B

US 9,081,596 B2

U.S. Patent Jul. 14, 2015 Sheet 17 of 25 US 9,081,596 B2

FIG. 18B
1031
Application VMQOSX
1500
OS process
requesting
unit
A
W
FIG. 19A
1500
0S5 process requesting unit
1512
Internal
1510 1511 processing
0OS process Reguest / unit
receiving > determining _-1513
unit unit \
Reguesting
unit

U.S. Patent Jul. 14, 2015 Sheet 18 of 25 US 9,081,596 B2

FIG. 198

1500

QS process regquesting unit

_-1310 .~1513
QS process
receiving S
unit

Reguesting
unit

U.S. Patent

Jul. 14, 2015 Sheet 19 of 25 US 9,081,596 B2
FIG. 20
1q11 1001
LUiniversal Virtualization Application DL
0s software VMOS application
S1100

AN

Obtain application

S1101
e et YES
pHication? :
Request to

NG create VM
S1102.
Load
application-executing
VM
51103,
Load DL application to
application-executing VM
51106 S1104.
e | [Regiser peret
application retationship
Execute -
Execute N
51105 >
End End End

End

US 9,081,596 B2

U.S. Patent Jul. 14, 2015 Sheet 20 of 25
FI1G. 21
1011 1001 1021 1022
Universal Virtualization Application DL
0s software VMOSX application X
OS process
512\0@ request
085 process I
request nternal
NGO rocess?
YES
51201
| Qbtain parent VM
51202
| Check policy
<1204 request YES
» 51205
Perform OS8 process Parform OS process
Result of
sending notice | Result of it of
sending notice | Resultof
> sending notice

End

End

End

End

US 9,081,596 B2

Sheet 21 of 25

Jul. 14, 2015

U.S. Patent

WA
Huanoexs

~uogeoyddy

0z91

A

3P0

32ANAS

HUN BUN BuIesu
Bunesin N Hun UoINIBXa
’ WA <4 BURNIaXD e Bujean mo_w‘mu:agm S
paieapaq WA A 34013Q mvou mﬂm
POQT €091 2091 10917

aoiaap Buneadn WA Bunnisxa-uonediddy

0091

¢¢ DI

WA

(RRCR B

U.S. Patent Jul. 14, 2015 Sheet 22 of 25 US 9,081,596 B2

FIG. 23
A A
1001
Application VM
VM creating > managing
unit unit

1301 /

Application-executing
VM obtaining unit

Virtualization software

FIG. 24

1011

Universal OS

1400 1402

Application Device
foad unit driver A

U.S. Patent Jul. 14, 2015 Sheet 23 of 25 US 9,081,596 B2

FIG. 25
A A
1001
¥ 1302 v 1303
VM 0S process
managing request control
unit unit

3
1304 / 1305

Parent and child l

Palicy

retationship managing unit

managing unit

Virtualization software

FI1G. 26
- 1011
Universal 0OS
1401 L1402
Application VM 0OS Pevice
process receiving driver A

unit

U.S. Patent Jul. 14, 2015 Sheet 24 of 25 US 9,081,596 B2

FIG. 27
30 s 40
Virtual machine Virtual machine
Group of
o Group of
applications far applications for
telecommunications -
) enferprise
carrier
0s for
telecommunications 0OS for enterprise
carrier
Virtual hardware Virtual hardware
A A
¥ Y e 20
Virtuatlization software
\
v 10
Hardware

U.S. Patent Jul. 14, 2015 Sheet 25 of 25 US 9,081,596 B2
FIG. 28
70 80
VM VM
T2
05 0S
e 9 D
Virtual VM Virtual
hardware creating hardware
device
A E: § A
Y - 60 v v

VMM

VM controller

A

y

Physical hardware

US 9,081,596 B2

1

INFORMATION PROCESSING DEVICE,
VIRTUAL MACHINE CREATION METHOD,
AND APPLICATION DISTRIBUTION SYSTEM

TECHNICAL FIELD

The present invention relates to an information processing
device, a virtual machine creation method, and an application
distribution system which prevent unauthorized access to
data.

BACKGROUND ART

Conventional TVs and cellular phones allow users to
download application software (hereafter referred to as
“application”) so as to add a new function after the purchase
of'a device (a TV or cellular phone), and use the application
software. Access by such an application to various resources
in the device is limited conventionally. Here, examples of the
resources in the device include position information such as
GPS (Global Positioning System), and data generated by
another application such as a dial function, an address book,
a bookmark, and image data. However, in recent years, the
access limitation has been eased to allow the development of
a variety of applications, and devices which allow access to
the position information and the data such as the dial function
and the address book have become available. In the future, it
is considered that devices which allow the users to install
device driver software (hereafter referred to as “device
driver”) so as to add new hardware would become available.

Moreover, only the specific application development com-
panies conventionally develop and distribute the applications.
However, in recent years, a system is being developed in
which general users can develop and distribute applications.
In such a system, in order for the general users to easily
develop applications, development tools generally used in a
personal computer (hereafter referred to as “PC”) are avail-
able for the development of applications, and debuggers can
be connected to devices for sale.

At the same time, the leakage of data such as personal
information stored in the PC, the cellular phone, or the like
has become a problem. Especially in the PC, malicious soft-
ware which is downloaded from an open network such as the
Internet reads the data such as the personal information or the
like stored in a storage device of the PC, and transmits the data
to outside of the PC via the network despite a user’s intention.
Moreover, the malicious software causes a user to download
the malicious software by making, with the use of an email or
the like, the user believe that the malicious software itselfis a
useful software for the user, or by exploiting the vulnerability
of software which operates on the PC.

In particular, a device driver can access data deployed by an
application on a memory. For this reason, a device driver in a
device to which the device driver can be installed accesses
data that is undesirable to be disclosed to another application
such as the personal information, and thus the device has a
high risk of the leakage.

In such a manner, the downloaded application (hereafter
referred to as “DL application”) and the downloaded device
driver (hereafter referred to as “DL device driver”) can access
many resources in the PC, the TV, and the cellular phone.
Moreover, the general users can develop and distribute appli-
cations and device drivers, which increases the threat of
attacks against the personal information stored in the device.
Specifically, such a situation makes it easier for malicious
attackers to develop and install attack applications (hereafter
referred to as “malicious applications™) and attack device

10

15

20

25

30

35

40

45

50

55

60

65

2

drivers (hereafter referred to as “malicious device drivers”™).
This enables the malicious applications and the malicious
device drivers to access information in the device, which
increases the danger of the leakage and tampering of infor-
mation.

There has conventionally been a method of separating
execution environments in each of which a software is
executed, as a method of protecting, from a DL application
and a DL device driver, an original function of a device such
as a telephone function in a cellular phone (see NPL 1, for
example). NPL 1 discloses, as the method of separating
execution environments, a method of separating execution
environments using a CPU having a plurality of modes such
as a normal mode and a secure mode, and a method of sepa-
rating execution environments using a virtualization technol-
ogy. FIG. 27 is a diagram showing the conventional method of
separating execution environments using a virtualization
technology which is disclosed by NPL 1.

In FIG. 27, a virtual machine 30 executes an operating
system (hereafter referred to as “OS”) and an application
which are selected and developed by, for example, a telecom-
munications carrier of cellular phone. A virtual machine 40
executes applications for providing, by an enterprise other
than the telecommunications carrier, a schedule and email
service for workers of the enterprise. A virtualization soft-
ware 20 provides, for the virtual machines 30 and 40, a virtual
hardware function obtained by virtualizing a hardware 10. In
addition, the virtualization software 20 controls the opera-
tions of the virtual machines 30 and 40.

The configuration shown in FIG. 27 makes it possible to
separate the virtual machine 30 which provides a communi-
cation function that is the basic function of the cellular phone
and the virtual machine 40 which provides the service for the
workers, in addition to the OS.

Consequently, the malicious application or the malicious
device driver does not influence the applications and the OS
of the telecommunications carrier which operate on the vir-
tual machine 30, even when, for example, the virtual machine
40 has a function which allows the user to freely download
applications and device drivers and the malicious application
or the malicious device driver operates on the virtual machine
40.

Furthermore, there is a method of dynamically creating a
virtual machine using a VM creating device as a method of
causing a virtual machine providing additional service for a
device such as the virtual machine 40 to operate when needed
(see PLT 1, for example). FIG. 28 is a block diagram showing
a conventional virtual machine creating system described in
PTL 1.

In FIG. 28, an OS 72 requests a VMM (virtual machine
manager) 60 to create a virtual machine. As a result, a VM
creating device 90 creates a virtual machine 80. Upon the
creation, the virtual machine 80 becomes a copy of a virtual
machine 70 at the time when the OS 72 requests the creation
of the virtual machine.

CITATION LIST
Patent Literature

[PTL 1]

Japanese Unexamined Patent Application Publication No.
2008-165795

[PTL 2]

Japanese Unexamined Patent Application Publication No.
2005-011336

US 9,081,596 B2

3

Non Patent Literature

[NPL 1]

Intel Corporation and NTT DoCoMo, Inc. “Open and Secure
Terminal Initiative (OSTI) Architecture Specification
Revision 1.007, Oct. 16, 2006

[NPL 2]

Okamoto, Tatsuaki and Hirosuke Yamamoto. Gendai Angou.
Sangyou Tosho (1997)

[NPL 3]

ITU-T Recommendation X, 509 (August/2005): Information
Technology—Open Systems Interconnection—The
Directory: Authentication Framework, 2005

[NPL 4]

Kurosawa, Kaoru and Ogata Wakaha. Gendai Angou No
Kisosuuri. Corona Publishing Co., Ltd (2004).

SUMMARY OF INVENTION
Technical Problem

However, with the conventional configurations, down-
loaded applications and device drivers operate in the same
virtual machine. Thus, the conventional configurations do not
make it possible to secure other downloaded applications
when a malicious application or a malicious device driver is
downloaded.

The present invention has been conceived to solve the
conventional problem, and an object of the present invention
is to provide an information processing device which makes it
possible to prevent the malicious application or the malicious
device driver from accessing information in the other appli-
cations.

Solution to Problem

In order to solve the conventional problem, an information
processing device according to an aspect of the present inven-
tion is an information processing device which has a plurality
of virtual machines and includes a virtual machine managing
unit which manages the virtual machines. The virtual
machine managing unit includes an application virtual
machine (VM) creating unit which creates a virtual machine
for executing a program. A first virtual machine determines
whether a first program is to be executed on the first virtual
machine or to be executed on a virtual machine other than the
first virtual machine, the first virtual machine being one of the
virtual machines, and the first program being executable on
the first virtual machine. When the first virtual machine deter-
mines that the first program is to be executed on the other
virtual machine, the application VM creating unit creates a
second virtual machine for executing the first program.

With this configuration, the information processing device
according to the aspect of the present invention creates a
virtual machine independent of an application that may be an
attack application (malicious application or malicious device
driver) of a malicious attacker, and allows the virtual machine
to execute the application. As a result, the information pro-
cessing device successfully prevents the application from
accessing the information held by other applications.

Moreover, when the first program is a program obtained
from an other device, the first virtual machine may determine
that the first program is to be executed on the other virtual
machine.

With this configuration, the information processing device
according to the aspect of the present invention successfully
prevents the application that may be the malicious application

10

15

20

25

30

35

40

45

50

55

60

65

4

or the malicious device driver and is obtained from the other
device from accessing the information held by the other appli-
cations.

Moreover, when the first program includes a device driver
software program obtained from an other device, the first
virtual machine may determine that the first program is to be
executed on the other virtual machine.

With this configuration, the information processing device
according to the aspect of the present invention successfully
prevents the malicious device driver from accessing the infor-
mation held by the other applications.

Moreover, the information processing device may further
include a storage unit which stores an operating system (OS)
program for VM. The first virtual machine may further deter-
mine whether a second program is to be executed on the first
virtual machine or to be executed on the other virtual
machine, the second program being different from the first
program and executable on the first virtual machine. The
application VM creating unit may (i) create a third virtual
machine for executing the second program, when the first
virtual machine determines that the second program is to be
executed on the other virtual machine, and (ii) create, using
the OS program for VM, an operating system for the second
virtual machine and an operating system for the third virtual
machine.

With this configuration, the information processing device
according to the aspect of the present invention is capable of
using the common OS for the virtual machines. As a result, in
comparison with a case where a different OS is used for each
virtual machine, it is possible to reduce the capacity of the
storage unit more.

Moreover, the second virtual machine may include an OS
process requesting unit which sends, to the virtual machine
managing unit, an OS process request for the other virtual
machine to execute an OS process that is inexecutable on an
operating system for the second virtual machine, and the
virtual machine managing unit may further include an OS
process request control unit which requests the other virtual
machine to execute the OS process when the virtual machine
managing unit receives the OS process request from the sec-
ond virtual machine.

With this configuration, in the information processing
device according to the aspect of the present invention, the
virtual machine can request the other virtual machine to
execute the process that the virtual machine cannot execute.
Consequently, the function of the OS of each function can be
eliminated, and thus a resource (e.g. memory) necessary for
each virtual machine can be eliminated.

Moreover, the virtual machine managing unit may further
include a parent and child relationship managing unit which
manages a parent and child relationship of the virtual
machines. The parent and child relationship managing unit
may manage a parent and child relationship in which the first
virtual machine that requests the creation of the second vir-
tual machine is a parent and the second virtual machine cre-
ated according to the request is a child. The OS process
request control unit may request the first virtual machine to
execute the OS process, when the virtual machine managing
unit receives the OS process request from the second virtual
machine, the first virtual machine being managed as the par-
ent of the second virtual machine.

With this configuration, the information processing device
according to the aspect of the present invention is capable of
requesting the virtual machine to execute the OS process, the
virtual machine being the “parent” of the virtual machine
which has sent the OS process request.

US 9,081,596 B2

5

Moreover, the virtual machine managing unit may further
include a policy managing unit which determines, for each of
functions achieved through the OS process request, whether
or not it is possible to request the other virtual machine to
execute an OS process corresponding to the function. The OS
process request control unit may request the first virtual
machine to execute the OS process, when the policy manag-
ing unit determines that it is possible to request the other
virtual machine to execute the OS process.

With this configuration, the information processing device
according to the aspect of the present invention successfully
prevents the malicious application or the malicious device
driver from accessing information held by other applications
which achieve specific functions.

Moreover, the OS process requesting unit may (i) deter-
mine that the second virtual machine executes the OS pro-
cess, when the first program includes the device driver soft-
ware program obtained from the other device and the device
driver software program can execute the OS process, and (ii)
send the OS process request to the virtual machine managing
unit when the device driver software program cannot execute
the OS process.

With this configuration, the information processing device
according to the aspect of the present invention can eliminate
the function of the OS of each virtual machine, and can thus
eliminate the resource (e.g. memory) necessary for each vir-
tual machine.

It is to be noted that the present invention is realized not
only as such an information processing device but also as a
virtual machine creation method having, as steps, the charac-
teristics units included in the information processing device
and a program causing a computer to execute such character-
istics steps. It goes without saying that such a program can be
distributed via a recording medium such as a CD-ROM and a
transmission medium such as the Internet.

Furthermore, the present invention can be realized not only
as a semiconductor integrated circuit (LSI) which achieves
part or all of the functions of the information processing
device but also as an application distribution system includ-
ing the information processing device.

Advantageous Effects of Invention

From the above, the present invention successfully pro-
vides the information processing device which prevents the
malicious application or the malicious device driver from
accessing the information in the other applications.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1is a schematic diagram showing a whole application
distribution system according to Embodiment 1 ofthe present
invention.

FIG. 2 is a software configuration diagram for devices
according to Embodiment 1 of the present invention.

FIG. 3 is a schematic diagram showing a normal software
execution environment according to Embodiment 1 of the
present invention.

FIG. 4 is a hardware configuration diagram of each of
devices according to Embodiment 1 of the present invention.

FIG. 5 is a block diagram showing an application distribu-
tion server according to Embodiment 1 of the present inven-
tion.

FIG. 6 is a block diagram showing a development environ-
ment according to Embodiment 1 of the present invention.

FIG. 7 is a block diagram showing a package generating
unit according to Embodiment 1 of the present invention.

35

40

45

50

55

60

65

6

FIG. 8 is a diagram showing a download application pack-
age according to Embodiment 1 of the present invention.

FIG. 9 is a flow chart for secure boot according to Embodi-
ment 1 of the present invention.

FIG. 10 is a flow chart for virtual machine start-up accord-
ing to Embodiment 1 of the present invention.

FIG. 11 is a block diagram showing a virtualization soft-
ware according to Embodiment 1 of the present invention.

FIG. 12 is a diagram showing an application-executing VM
according to Embodiment 1 of the present invention.

FIG. 13 is a virtual machine management table according
to Embodiment 1 of the present invention.

FIG. 14 is a parent and child relationship management
table according to Embodiment 1 of the present invention.

FIG. 15A is a policy table according to Embodiment 1 of
the present invention.

FIG. 15B is a policy table according to Embodiment 1 of
the present invention.

FIG. 16 is ablock diagram showing a universal OS accord-
ing to Embodiment 1 of the present invention.

FIG. 17A is a block diagram showing an application load
unit according to Embodiment 1 of the present invention.

FIG. 17B is a block diagram showing an application load
unit according to Embodiment 1 of the present invention.

FIG. 18A is a block diagram showing an application
VMOSX according to Embodiment 1 of the present inven-
tion.

FIG. 18B is a block diagram showing an application
VMOSY according to Embodiment 1 of the present inven-
tion.

FIG. 19A is a block diagram showing an OS process
requesting unit according to Embodiment 1 of the present
invention.

FIG. 19B is a block diagram showing an OS process
requesting unit according to Embodiment 1 of the present
invention.

FIG. 20 is a flow chart for application VM generation
processing according to Embodiment 1 of the present inven-
tion.

FIG. 21 is a flow chart for OS process request according to
Embodiment 1 of the present invention.

FIG. 22 is a block diagram showing an application-execut-
ing VM creating device according to Embodiment 1 of the
present invention.

FIG. 23 is a block diagram showing a virtualization soft-
ware according to Embodiment 2 of the present invention.

FIG. 24 is ablock diagram showing a universal OS accord-
ing to Embodiment 2 of the present invention.

FIG. 25 is a block diagram showing a virtualization soft-
ware according to Embodiment 3 of the present invention.

FIG. 26 is ablock diagram showing a universal OS accord-
ing to Embodiment 3 of the present invention.

FIG. 27 is a block diagram showing a cellular phone for
which an execution environment is separated using conven-
tional virtualization technology.

FIG. 28 is a block diagram showing a conventional virtual
machine creating system.

DESCRIPTION OF EMBODIMENTS

The following describes embodiments according to the
present invention with reference to the drawings.

Embodiment 1

When a DL application or DL device driver is executed, an
information processing device according to Embodiment 1 of

US 9,081,596 B2

7

the present invention creates a virtual machine for the DL
application or DL device driver. Consequently, even if a pro-
gram is a malicious application or a malicious device driver,
the program is executed on the dedicated virtual machine, and
thus the program cannot access information held by other
programs. In this manner, the information processing device
according to Embodiment 1 of the present invention prevents
the malicious application or the malicious device driver from
accessing the information held by the other applications.
<Configuration of Application Distribution System 100>

FIG. 1 is a schematic diagram showing an application
distribution system 100 according to Embodiment 1 of the
present invention.

The application distribution system 100 shown in FIG. 1
includes a device 110, an application distribution server 120,
an apparatus for development 130, and a device 111.

The device 110 is, for instance, a cellular phone having a
network communication function. The device 110 is con-
nected to the application distribution server 120 via a net-
work, and downloads an application from the application
distribution server 120. Moreover, the device 110 which has
downloaded the application obtains a new function by install-
ing the application.

The application distribution server 120 is connected to the
device 110 and the apparatus for development 130 via the
network. The application distribution server 120 manages
applications uploaded by the apparatus for development 130,
and performs a process of downloading an application to the
device 110.

The apparatus for development 130 is connected to the
application distribution server 120 via the network, and is an
apparatus for developing applications which operate on the
device 110. Moreover, the apparatus for development 130 is
connected to the device 111 via an interface compliant with
the Universal Serial Bus (hereafter referred to as “USB”)
standards or the like. A developer develops an application
using the apparatus for development 130, and performs a test
to determine whether or not the application operates on the
device 111 in an expected manner. When the test finds an error
in the application, the developer debugs the application using
the apparatus for development 130. Subsequently, uploading
the application to the application distribution server 120
allows the device 110 to use the application. It is to be noted
that the devices 110 and 111 are devices having the same
functions, and only differ in being used by a general user (the
device 110) or the developer (the device 111).

Moreover, the devices 110 and 111 correspond to the infor-
mation processing device according to an implementation of
the present invention.

<Software Configuration for Devices 110 and 111>

FIG. 2 is a software configuration diagram for the devices
110 and 111 according to Embodiment 1 of the present inven-
tion.

The devices 110 and 111 shown in FIG. 2 include a normal
software execution environment (hereafter referred to as
“normal environment™) 1000 and a secure software execution
environment (hereafter referred to as “secure environment™)
1100. Each ofthe devices 110 and 111 executes a software (in
the normal environment 1000 or secure environment 1100) by
switching between the normal environment 1000 and the
secure environment 1100.

The software in the secure environment 1100 includes a
secure OS 1101 and a secure boot unit 1102. Here, the “secure
OS” refers to a “secure operating system”.

The secure OS 1101 manages the software in the secure
environment 1100.

20

30

40

45

50

55

65

8

The secure boot unit 1102 performs secure boot when the
devices 110 and 111 are powered on. The secure boot process
is described later with reference to a flow chart.

The method disclosed by, for example, PLT 2 can be used
as a method of switching between the normal environment
1000 and the secure environment 1100.

<Software Configuration for Normal Environment 1000>

FIG. 3 is a software configuration diagram for the normal
environment 1000 according to Embodiment 1 of the present
invention.

The software in the normal environment 1000 shown in
FIG. 3 includes a virtualization software 1001, and virtual
machines 1002, 1003, 1004, and 1005.

The virtual machine 1002 includes a virtual hardware
1010, a universal OS 1011, a download control application
1012, an application A 1013, and an application B 1014.
Moreover, the virtual machine 1003 includes a virtual hard-
ware 1020, an application VMOSX 1021, and a DL applica-
tion X 1022. Furthermore, the virtual machine 1004 includes
avirtual hardware 1030, an application VMOSY 1031, and a
DL application Y 1032. Moreover, the virtual machine 1005
includes a virtual hardware 1040, a RTOS 1041, and a phone
call software 1042. Here, the “universal OS”, the “application
VMOS”, the “DL application”, and the “RTOS” are a “uni-
versal operating system”, an “application VM operating sys-
tem”, a “downloaded application”, and a “real-time operating
system”, respectively. In addition, the “VM” stands for “Vir-
tual Machine”.

The virtualization software 1001 functions to: control the
virtual machines 1002 to 1005 operating thereon; allocate
hardware resources such as a memory and a CPU to the
virtual machines 1002 to 1005 and manage the hardware
resources; access devices according to requests from the vir-
tual machines 1002 to 1005; and schedule the virtual
machines 1002 to 1005. The virtualization software 1001
corresponds to a virtual machine managing unit according to
an implementation of the present invention.

The virtual machines 1002 to 1005 include the virtual
hardwares, OSs, and applications, and are executed by the
virtualization software 1001 independently from each other.
Moreover, the virtual machines 1002 to 1005 are independent
of each other, and there is no data transfer or exchange of
instructions directly between the virtual machines. In other
words, the data transfer or the exchange of the instructions
between the virtual machines is always performed through
the virtualization software 1001.

Each of the virtual hardwares 1010, 1020, 1030, and 1040
virtually provides a hardware function to a corresponding one
of the virtual machines. Moreover, each of the virtual hard-
wares 1010, 1020, 1030, and 1040 includes an IPL. (Initial
Program [oader) and a BIOS (Basic Input/Output System). It
is to be noted that each of the virtual hardwares 1010, 1020,
1030, and 1040 may be integrated into the virtualization
software 1001 or the OS of the corresponding one of the
virtual machines, depending on the configuration of the vir-
tualization software 1001.

The universal OS 1011 loads applications (applications A
1013 and B 1014) into a memory and executes the applica-
tions, or deletes (unloads) an application (application A 1013
or B 1014) from the memory.

Furthermore, the universal OS 1011 requests the virtual-
ization software 1001 to execute DL applications (DL appli-
cation X 1022 and DL application Y 1032).

Moreover, the universal OS 1011 provides a network com-
munication function for the download control application
1012 and the applications A 1013 and B 1014.

US 9,081,596 B2

9

The download control application 1012 communicates
with the application distribution server 120 connected to the
device 110 via the Internet, and downloads and installs appli-
cations to the device 110.

The applications A 1013 and B 1014 have functions such as
an address management function, a web browse function, and
an e-mail function, and provide these functions for the user.

In Embodiment 1 of the present invention, the DL applica-
tions are downloaded from the application distribution server
120 by the download control application 1012 operating on
the universal OS 1011, and stored in the device 110. Subse-
quently, when the universal OS 1011 requests the virtualiza-
tion software 1001 to execute the DL applications, the virtu-
alization software 1001 performs setting so that each of the
DL applications operates on one of the virtual machines.
Consequently, the DL application is executed on the virtual
machine.

It is to be noted that although Embodiment 1 of the present
invention describes a case where the DL applications X 1022
andY 1032 are downloaded from the application distribution
server 120 and executed, the present invention is not limited
to the case. In addition, the number of the virtual machines is
not limited to 4. In other words, when the universal OS 1011
requests the virtualization software 1001 to execute the DL
applications, 4 or more virtual machines may be created, or
when the RTOS 1041 requests the virtualization software
1001 to execute the DL applications, such virtual machines
may be created.

Each of the applications VMOSX 1021 and VMOSY 1031
is an OS operating on a virtual machine which operates a DL
application. The application VMOSX 1021 has a function
necessary for the DL application X 1022 to operate. The
application VMOSY 1031 has a function necessary for the
DL application’Y 1032 to operate. It is to be noted that details
of the applications VMOSX 1021 and VMOSY 1031 are
described later.

Each of the DL applications X 1022 and Y 1032 is an
application downloaded from the application distribution
server 120. Like the applications A 1013 and B 1014, the DL,
applications X 1022 andY 1032 provide various functions for
the user.

The RTOS 1041 is an OS for operating software providing
basic functions of the device.

The phone call software 1042 provides a phone call func-
tion that is one of basic functions of the devices 110 and 111.

It is to be noted that although the virtualization software
1001 performs setting so that each DL application operates on
one of the virtual machines, the present invention is not lim-
ited to this. For instance, the virtualization software 1001 may
perform setting so that each of applications (applications A
1013 and B 1014) not yet downloaded from the application
distribution server 120 operates on one of the virtual
machines or part of the DL applications operates on the uni-
versal OS 1011.

It is to be noted that the applications VMOSX 1021 and
VMOSY 1031 may have different functions or the same
functions. In addition, the applications VMOSX 1021 and
VMOSY 1031 may have the same functions as the universal
0S 1011.

<Hardware Configuration for Devices 110 and 111>

FIG. 4 is a hardware configuration diagram for each of the
devices 110 and 111 according to Embodiment 1 of the
present invention.

The elements in FIGS. 2 and 3 correspond to elements
stored in an internal secure memory 1204 and a memory 1220

15

20

25

30

35

40

45

50

55

60

65

10

shown in FIG. 4. Each of functions is implemented by execut-
ing, on a CPU 1201, software for implementing each of the
elements.

Each of the devices 110 and 111 shown in FIG. 4 includes
a system LSI 1200, a nonvolatile memory device 1240, and
the memory 1220. The system LSI 1200 is connected to the
nonvolatile memory device 1240 and the memory 1220 via
external buses.

The system L.SI 1200 includes the CPU 1201, an IPL. 1202,
an execution environment switching unit 1203, and the inter-
nal secure memory 1204. It is to be noted that details of the
system L.SI 1200 are described later.

The memory 1220 stores the virtualization software 1001,
the universal OS 1011, the download control application
1012, the applications A 1013 and B 1014, the application
VMOSX 1021, the DL application X 1022, the application
VMOSY 1031, the DL application Y 1032, the RTOS 1041,
and the phone call software 1042. This shows a situation
where each element shown in FIG. 3 is loaded into the
memory 1220.

The nonvolatile memory device 1240 stores the applica-
tion-executing VM 1241 and the DL applications X 1242 and
Y 1243.

Although not shown, the nonvolatile memory device 1240
stores softwares to be stored in the memory 1220 and the
internal secure memory 1204. Furthermore, the nonvolatile
memory device 1240 may store applications other than the
applications A 1013 and B 1014 and the DL applications X
1242 and Y 1243.

The softwares which are encrypted with predetermined
keys and are to be stored in the internal secure memory 1204
are stored in the nonvolatile memory device 1240. The soft-
wares are stored in the nonvolatile memory device 1240 at the
time of factory manufacturing of the devices 110 or 111.
Moreover, the softwares are deployed from the nonvolatile
memory device 1240 to the memory 1220 and the internal
secure memory 1204 at the time of system start-up or at the
time of request for application start-up.

Itis to be noted that the keys for encrypting the softwares to
be stored in the internal secure memory 1204 may be the same
for all the devices or may differ for the respective system [.SIs
1200 or the softwares. Moreover, keys for decrypting the
encrypted softwares may be stored in a key storage unit (not
shown) in the system [.SI 1200, or the softwares which are
encrypted with keys stored in the system LSI 1200 may be
stored in the nonvolatile memory device 1240.

Although each of the devices 110 and 111 further includes,
for example, an input and output unit not shown in FIG. 4, a
description of the input and output unit and so on is omitted as
they do not constitute the essence of the present invention. In
addition, although the system LSI 1200 includes, for
example, a peripheral circuit not shown in FIG. 4, a descrip-
tion of the peripheral circuit and so on is omitted as they do
not constitute the essence of the present invention.

<Configuration of System LSI 1200>

The following describes in detail each of the elements in
the system LSI 1200 according to Embodiment 1 of the
present invention.

The CPU 1201 controls operations of the entire device 110
or 111 by executing instruction codes in, for example, the
softwares stored in the memory 1220 and the internal secure
memory 1204. Moreover, the CPU 1201 has two modes, a
privileged mode and a non-privileged mode, as operation
modes. The universal OS 1011 operates in the privileged
mode, and the download control application 1012 and the
applications A 1013 and B 1014 operate in the non-privileged
mode.

US 9,081,596 B2

11

The IPL 1202 is a software which starts first when the
device 110 or 111 is powered on. The IPL. 1202 starts the
secure OS 1101 deployed in the internal secure memory 1204
and the virtualization software 1001 deployed in the memory
1220, when the device 110 or 111 is powered on. The IPL
1202 is stored in a mask ROM provided in the system [.SI
1200.

The execution environment switching unit 1203 switches
between the normal environment 1000 and the secure envi-
ronment 1100 of the system L.SI 1200. The execution envi-
ronment switching unit 1203 performs access control so that
the internal secure memory 1204 is accessible from the CPU
1201 or the like only when the execution environment of the
system LSI 1200 is the secure environment.

The internal secure memory 1204 stores the secure OS
1101 and the secure boot unit 1102.

It is to be noted that the system LSI 1200 may further
include a nonvolatile secure memory (not shown). The execu-
tion environment switching unit 1203 performs access con-
trol on the nonvolatile secure memory so that the nonvolatile
secure memory is accessible from the CPU 1201 or the like
only when the execution environment of the system L.S1 1200
is the secure environment. It is to be noted that the nonvolatile
secure memory may store the softwares to be stored in the
internal secure memory 1204 or the keys for decrypting the
encrypted softwares.

<Configuration of Application Distribution Server 120>

FIG. 5 is a schematic diagram showing the application
distribution server 120 according to Embodiment 1 of the
present invention.

The application distribution server 120 shown in FIG. 5§
includes an application holding unit 2000, an application
reception processing unit 2001, and an application transmis-
sion processing unit 2002.

The application holding unit 2000 holds applications man-
aged by the application distribution server 120.

The application reception processing unit 2001 communi-
cates with the apparatus for development 130 connected via
the network, to receive applications uploaded by the appara-
tus for development 130. Moreover, the application reception
processing unit 2001 transmits the received applications to
the application holding unit 2000, and requests the applica-
tion holding unit 2000 to hold and manage the transmitted
applications.

The application transmission processing unit 2002 com-
municates with the device 110 connected via the network.
The application transmission processing unit 2002 obtains,
from the application holding unit 2000, applications
requested by the device 110, and transmits the requested
applications to the device 110. Moreover, the application
transmission processing unit 2002 creates a list of applica-
tions held in the application holding unit 2000, and transmits
the created list to the device 110.

<Configuration of Apparatus for Development 130>

FIG. 6 is a block diagram showing the apparatus for devel-
opment 130 according to Embodiment 1 of the present inven-
tion.

The apparatus for development 130 shown in FIG. 6
includes a package generating unit 3000, a configuration file
creating unit 3001, a key pair holding unit 3002, a key pair
generating unit 3003, a debug processing unit 3004, and an
upload processing unit 3005.

The package generating unit 3000 creates an application by
compiling source codes developed by a developer. Then, the
package generating unit 3000 generates a package file in
which an application signature (Signature), a configuration
file, and a public key certificate (Certificate) are added to the

10

15

20

25

30

35

40

45

55

60

12

created application. As an example, a signature scheme using
the RSA method can be used for the application signature
scheme. It is to be noted that details of the above are described
later.

It is to be noted that the application signature (digital sig-
nature) scheme is not limited to the RSA method, and other
signature schemes may be used. For instance, NPL 2
describes, on pages 171 to 188, the other signature schemes in
detail. Moreover, NPL 3 describes the public key certificate in
detail.

The configuration file creating unit 3001 creates the con-
figuration file to be added to the application. The configura-
tion file includes various information items such as informa-
tion indicating which resource of a device the application is to
use, information about the developer of the application, and
information indicating what kind of service the application
provides for other applications. The configuration file creat-
ing unit 3001 creates the information items based on values
set by the application developer.

The key pair holding unit 3002 holds keys (a key pair of a
private key and a public key in a public-key cryptosystem) for
use in generating and verifying the application signature to be
added to the package. For example, the key pair holding unit
3002 holds the public key in a format of the public key
certificate described in NPL 3 (ITU-T Recommendation X.
509).

The key pair generating unit 3003 generates the key pair of
the private key and the public key in the public-key crypto-
system, and holds the generated key pair in the key pair
holding unit 3002.

It is to be noted that NPL 2 describes in detail the public-
key cryptosystem on pages 107 to 130.

The debug processing unit 3004 communicates with the
device 111 connected to the apparatus for development 130
through a USB or the like, and performs a process of debug-
ging an application developed by the developer. Examples of
the process of debugging include a process of installing an
application by using a generated package, a process of
executing an installed application, a process of setting a
breakpoint, and a process of obtaining a log output.

The upload processing unit 3005 communicates with the
application distribution server 120 connected to the apparatus
for development 130 via the network, and performs a process
of uploading, to the application distribution server 120, the
package generated by the package generating unit 3000.

<Configuration of Package Generating Unit 3000>

FIG. 7 is a block diagram showing the package generating
unit 3000 according to Embodiment 1 of the present inven-
tion.

The package generating unit 3000 shown in FIG. 7
includes a compiler 3100, a linker 3101, and a package gen-
eration tool 3102.

The compiler 3100 creates an object file by compiling
inputted source codes 3110.

The linker 3101 creates a file (executable file) that can be
executed by the devices 110 and 111, by linking the object file
created by the compiler 3100 and a library.

The package generation tool 3102 generates a download
package 3120 using the executable file created by the linker
3101, a configuration file 3132 created by the configuration
file creating unit 3001, and a private key 3130 and a public key
certificate 3131 held in the key pair holding unit 3002.

<Structure of Download Package 3120>

FIG. 8 is a diagram showing the download package 3120
according to Embodiment 1 of the present invention.

US 9,081,596 B2

13

In FIG. 8, the download package 3120 includes an appli-
cation 3200, a device driver 3201, a configuration file 3202,
an application signature list 3203, and a public key certificate
3204.

The application 3200 and the device driver 3201 are
executable files created by the compiler 3100 and the linker
3101 from the source codes 3110 developed by the developer.

The configuration file 3202 is the same as the configuration
file 3132 inputted to the package generation tool 3102.

The application signature list 3203 is a list including sig-
natures of the application 3200, the device driver 3201, and
the configuration file 3202. The package generation tool 3102
generates the signatures from the application 3200, the device
driver 3201, and the configuration file 3202 that are inputted
at the time of generating the download package 3120, and
creates the application signature list 3203. The private key
3130 is used by the application signature list 3203 to generate
the signatures.

The public key certificate 3204 is the same as the public key
certificate 3131 inputted to the package generation tool 3102.

It is to be noted that although the download package 3120
includes, as a file, each of the application 3200, the device
driver 3201, the configuration file 3202, the application sig-
nature list 3203, and the public key certificate 3204, the
present invention is not limited to this. For instance, each of
the files may be one or plural in number. Moreover, part of the
files may be included in the download package 3120. Further-
more, the files may be downloaded in one file as the download
package 3120, may be separately downloaded, or may be
downloaded after being divided into files.

It is to be noted that the application signature list 3203 may
include a signature for the entire list including the signatures
of the application 3200, the device driver 3201, and the con-
figuration file 3202. Moreover, the download package 3120
may include the signatures of the application signature list
3203.

<Secure Boot Process>

The devices 110 and 111 verify, at the time of their start-up,
whether or not the virtualization software 1001 and a software
operating in the secure environment 1100 have been tam-
pered with.

The following describes a method (secure boot process)
from when the devices 110 and 111 are powered on to when
the virtualization software 1001 starts, with reference to a
flow chart shown in FIG. 9.

When powered on, the device 110 or 111 starts the IPL
1202 in the system LSI 1200.

The IPL 1202 first performs an initialization process on
hardware of the device 110 or 111 (S1000). In the initializa-
tion, process, the following processes are performed: opera-
tion check on the memory 1220, initialization of the execu-
tion environment switching unit 1203, initialization of the
peripheral circuit (not shown), and so on. Subsequently, the
secure OS 1101 is started.

The secure OS 1101 performs initialization of the secure
environment 1100 (implementation of a secure software
execution environment), thereby allowing an application to
operate in the secure environment 1100. Subsequently, the
secure OS 1101 loads the secure boot unit 1102 (S1001), and
starts the secure boot unit 1102.

Here, the secure boot unit 1102 is stored in encrypted state
in the nonvolatile memory device 1240. Thus, the execution
environment switching unit 1203 decrypts the encrypted
secure boot unit 1102 using a key unique to the system LSI
1200, and loads the decrypted secure boot unit 1102 to the
internal secure memory 1204.

10

25

30

40

45

55

14

The secure boot unit 1102 verifies the secure OS 1101 and
the secure boot unit 1102 (S1002). As a verification method,
the secure boot unit 1102 verifies whether or not the secure
OS 1101 and the secure boot unit 1102 have been tampered
with, by generating a hash value of a software and comparing
the generated hash value with a pre-calculated reference hash
value. Here, the reference hash value is calculated before
factory shipment, and is embedded in the secure boot unit
1102. Moreover, the secure boot unit 1102 is encrypted with
the reference hash value embedded, and stored in the non-
volatile memory device 1240.

It is to be noted that although the hash value is used in the
verification method for software here, the present invention is
not limited to this. A method in which a signature is used
instead of the hash value may be employed. Here, the secure
boot unit 1102 may be encrypted with a public key for use in
signature verification embedded, and stored in the nonvolatile
memory device 1240. The public key may be stored in the
nonvolatile memory device 1240 separately from the secure
boot unit 1102. Moreover, the secure boot unit 1102 may
obtain the public key from another apparatus outside the
device.

When the secure boot unit 1102 determines that the secure
OS 1101 and the secure boot unit 1102 have not been tam-
pered with, based on a result of the verification of the secure
OS 1101 and the secure boot unit 1102 in step S1002, the
secure boot unit 1102 determines YES in step S1003, and the
flow proceeds to step S1004. Moreover, when the secure boot
unit 1102 determines that one of the secure OS 1101 and the
secure boot unit 1102 has been tampered with, based on the
result of the verification of the secure OS 1101 and the secure
boot unit 1102 in step S1002, the secure boot unit 1102
determines NO in step S1003, and the flow proceeds to step
S1006.

When the secure boot unit 1102 determines YES in step
S1003, the secure boot unit 1102 verifies the virtualization
software 1001 (S1004). For instance, the secure boot unit
1102 employs the same verification method as in step S1002.

When the secure boot unit 1102 determines that the virtu-
alization software 1001 has not been tampered with, based on
a result of the verification of the virtualization software 1001
in step S1004, the secure boot unit 1102 determines YES in
step S1005, ends the process, and returns the process to the
secure OS 1101. In contrast, when the secure boot unit 1102
determines that the virtualization software 1001 has been
tampered with, based on the result of the verification in step
S1004, the secure boot unit 1102 determines NO in step
S1005, and the flow transits to step S1006.

When the secure boot unit 1102 determines NO in either
step S1003 or step S1005, the secure boot unit 1102 sets a
secure boot failure flag (S1006). The secure boot failure flag
is data stored in a specific area of the internal secure memory
1204 (not shown). The secure OS 1101 and an application
which operates on the secure OS 1101 recognize a state of the
device 110 or 111 by checking the secure boot failure flag,
and determine whether to operate or not.

After the end of the process in step S1006, the secure boot
unit 1102 returns the process to the secure OS 1101.

When the process is returned from the secure boot unit
1102, the secure OS 1101 returns the process to the IPL. 1202.

The IPL. 1202 loads, to the memory 1220, the virtualization
software 1001 stored in the nonvolatile memory device 1240
(S1007), and executes (starts) the virtualization software
1001.

US 9,081,596 B2

15

It is to be noted that secure boot which is defined by the
MPWG (Mobile Phone Work Group) of the TCG (Trusted
Computing Group) may be employed in the secure boot pro-
cess.

Moreover, here, although the verification of the secure
mode software (S1002) is followed by the verification of the
virtualization software (S1004), the present invention is not
limited to this. For example, after the secure boot unit 1102
performs the verification of the secure mode software
(81002), the secure boot unit 1102 may temporarily return the
process to the IPL. 1202, and the IPL 1202 may successively
request, via the secure OS 1101, the verification of the virtu-
alization software (S1004) from the secure boot unit 1102.

Furthermore, although the secure boot process ends when
the virtualization software 1001 is executed, the present
invention is not limited to this. A scope of the secure boot
process may include an IPL, an OS, and an application in a
virtual machine. In the case where the scope of the secure boot
process includes the IPL, the OS, and the application, each of
the IPL, the OS, and the application verifies whether or not a
software to be started next has been tampered with, and then
starts (executes) the software to be started next.

<Start Process of Virtual Machine>

The virtualization software 1001 starts a predetermined
virtual machine at the time of device startup. In addition, the
virtualization software 1001 newly creates a virtual machine
in response to a request from a running virtual machine.

The following describes a process in which each of virtual
machines starts after a start of the virtualization software
1001 with reference to a flow chart shown in FIG. 10.

The virtualization software 1001 is started by the IPL. 1202
at the end of the secure boot process, and performs an initial-
ization process (S1010). After the initialization process, the
virtualization software 1001 reserves hardware resources
such as a memory for executing the virtual machine 1002, and
then starts the virtual machine 1002.

When started, the virtual machine 1002 first performs an
initialization process (S1011). The virtual machine 1002
executes the IPL 1202 in the virtual hardware 1010 as the
initialization process. Moreover, the virtual machine 1002
loads the universal OS 1011 to the memory, and executes the
universal OS 1011. Subsequently, during or after a start pro-
cess of the universal OS 1011, a process request from the
virtual machine 1002 to the virtualization software 1001 or
hardware interrupt aborts a process of the virtual machine
1002, and the process is returned to the virtualization soft-
ware 1001.

Next, the virtualization software 1001 reserves hardware
resources such as a memory for executing the virtual machine
1005, and starts the virtual machine 1005.

When started, the virtual machine 1005 first performs an
initialization process (S1012). The virtual machine 1005
executes the IPL 1202 in the virtual hardware 1040 as the
initialization process. Moreover, the virtual machine 1005
loads the RTOS 1041 to the memory, and executes the RTOS
1041. Subsequently, during or after a start process of the
RTOS 1041, a process request from the virtual machine 1005
to the virtualization software 1001 or hardware interrupt
aborts a process of the virtual machine 1005, and the process
is returned to the virtualization software 1001.

Then, the virtualization software 1001 schedules each vir-
tual machine according to a scheduling function.

When the virtual machine 1002 is executed according to
the scheduling function, the virtual machine 1002 starts the
application based on a request from the user using the device
(S1013).

20

30

40

45

55

16

At the time of starting the application, the virtual machine
1002 determines whether the application of which start has
been requested is to be operated by the virtual machine 1002
or another virtual machine. Specifically, the virtual machine
1002 determines whether or not the application of which start
has been requested is a DL application (S1014). It is to be
noted that the DL application is not limited to an application
downloaded from another apparatus via the network, and may
be an application obtained from still another apparatus. For
instance, the DL application may be an application which the
device 110 obtains via a recording medium detachable to the
device 110 after shipment. Alternatively, the virtual machine
1002 may determine whether or not the application of which
start has been requested is a DL device driver.

When the application is the DL application, the virtual
machine 1002 determines “YES”, and when the application is
not the DL application, the virtual machine 1002 determines
“NO”. For example, the virtual machine 1002 uses an exten-
sion assigned to a file name of the application of which start
has been requested, for the determination of the DL applica-
tion.

When the virtual machine 1002 determines “YES” in step
S1014, the virtual machine 1002 requests the virtualization
software 1001 to create a VM (application VM) for executing
the application of which start has been requested.

The virtualization software 1001 creates the virtual
machine 1003 for executing DL application (S1015), and
starts the virtual machine 1003. Details of the VM creation
process are described later with reference to a flow chart.

When started, the virtual machine 1003 performs an ini-
tialization process (S1017), and executes the application of
which start has been requested (S1018). Moreover, during the
execution of the DL application (S1018), a process request
from the virtual machine 1003 to the virtualization software
1001 or hardware interrupt may abort a process of the virtual
machine 1003, and the process may be returned to the virtu-
alization software 1001. In this case, when the virtual
machine 1003 is rescheduled, the virtual machine 1003
executes the aborted process according to the scheduling
function of the virtualization software 1001. When the appli-
cation ends, the virtual machine 1003 sends notice of an end
of the virtual machine to the virtualization software 1001.

Upon receiving the notice of the end from the virtual
machine 1003, the virtualization software 1001 sends notice
of the end of the VM to the virtual machine 1002.

Upon receiving the notice of the end of the VM, the virtual
machine 1002 recognizes that the application of which start
was requested in step S1013 has ended.

On the other hand, when the virtual machine 1002 deter-
mines “NO” in step S1014, the virtual machine 1002 executes
the application of which start has been requested (5S1016).

As stated above, each of the devices 110 and 111 according
to Embodiment 1 of the present invention starts the predeter-
mined virtual machine at the time of the start of a correspond-
ing one of the devices 110 and 111. Furthermore, when the
user requests the started predetermined virtual machine to
start the DL application, each of the devices 110 and 111
additionally starts a virtual machine for DL application (vir-
tual machine 1003), and executes the DL application in the
virtual machine.

It is to be noted that when the virtual machine 1002
requests creation of another VM for executing DL applica-
tion, during the abortion of the process of the virtual machine
1003, the virtualization software 1001 creates a virtual
machine (e.g. virtual machine 1004) other than the virtual
machine 1003, and allows the DL applications to be operated
on the different virtual machines, respectively.

US 9,081,596 B2

17

<Configuration of Virtualization Software 1001>

FIG. 11 is a software configuration diagram showing the
virtualization software 1001 according to Embodiment 1 of
the present invention.

In FIG. 11, the virtualization software 1001 includes an
application VM creating unit 1300, an application-executing
VM obtaining unit 1301, a VM managing unit 1302, an OS
process request control unit 1303, a parent and child relation-
ship managing unit 1304, and a policy managing unit 1305.

Upon receiving a request to create a virtual machine (appli-
cation VM) from a virtual machine operating on the virtual-
ization software 1001, the application VM creating unit 1300
creates a virtual machine (application VM) for executing DL,
application. Here, the application VM creating unit 1300
creates the virtual machine (application VM) according to an
application-executing VM and a DL application transmitted
from a virtual machine. Moreover, the application VM creat-
ing unit 1300 requests the VM managing unit 1302 to manage
the created virtual machine. Furthermore, the application VM
creating unit 1300 registers, in the parent and child, relation-
ship managing unit 1304, the virtual machine which has
requested the creation of the virtual machine as a “parent”,
and the created virtual machine as a “child”. It is to be noted
that details of the VM creation process are described later
with reference to a flow chart.

Moreover, here, although the application VM creating unit
1300 creates the virtual machine for executing DL applica-
tion, based on the application-executing VM and the DL
application transmitted from the virtual machine, the present
invention is not limited to this. For example, the application
VM creating unit 1300 may download, from the application
distribution server 120, a virtual machine including an appli-
cation, an OS, and a virtual hardware, perform a process of
loading the virtual machine, and request management from
the VM managing unit 1302. Moreover, the application VM
creating unit 1300 may create the virtual machine not at the
time of executing the DL application but at the time of down-
loading the DL application from the application distribution
server 120.

The application-executing VM obtaining unit 1301 reads
the application-executing VM 1241 stored in the nonvolatile
memory device 1240.

FIG. 12 is a diagram showing the structure of the applica-
tion-executing VM 1241 according to Embodiment 1 of the
present invention. The application-executing VM 1241
includes header information 1310, a VM main portion 1311,
and a verification value 1312. The VM main portion 1311
includes an OS 1315 and a virtual hardware 1316. The header
information 1310 includes an address (logical address) for
writing an application to be executed, and an address (logical
address) of a management structure which manages device
drivers. The verification value 1312 is a hash value that is
obtained when the VM main portion 1311 is inputted into a
hash function. The OS 1315 corresponds to an OS for VM
according to an implementation of the present invention, and
the nonvolatile memory device 1240 corresponds to a storage
unit according to an implementation of the present invention.

It is to be noted that the verification value 1312 may be not
behind of the VM main portion 1311 but ahead of the VM
main portion 1311, or may be included in the header infor-
mation 1310. Furthermore, the verification value 1312 may
be not included in the application-executing VM 1241 but
stored, in association with the application-executing VM
1241, in the nonvolatile secure memory separately from the
application-executing VM 1241.

It is to be noted that an algorithm such as MD4, MDS5,
SHA-1 (Secure Hash Algorithm-1), and SHA-2 can be used

25

30

40

45

55

65

18

as the hash function. Moreover, the verification value 1312
may be not the hash value but a digital signature, a MAC
(Message Authentication Code) value, an error-detecting
code value, or an error-correcting code value. For example,
CBC-MAC (Cipher Block Chaining Message Authentication
Code) and HMAC (Keyed-Hashing for Message Authentica-
tion Code) can be used as an algorithm for calculating the
MAC value. Moreover, for example, CRC (Cyclic Redun-
dancy Check) and a checksum can be used as an algorithm for
calculating the error-detecting code value. Furthermore, for
example, Reed-Solomon codes and Turbo codes can be used
as an algorithm for calculating the error-correcting code
value.

It is to be noted that NPL 4 describes in detail hash func-
tions on pages 96 to 105, and Message Authentication Code
on pages 30 to 39, and that NPL 2 describes in detail digital
signature schemes on pages 171 to 188.

It is to be noted that application-executing VMs 1241 may
be stored in the nonvolatile memory device 1240, and the
application-executing VM obtaining unit 1301 may switch
between the application-executing VMs 1241 to be used,
depending on a DL application. Here, the header information
1310 of each of the application-executing VMs 1241 may
include information which indicates functions of the applica-
tion-executing VM 1241 or information which associates the
application-executing VM 1241 with the DL application.

The VM managing unit 1302 manages virtual machines
which are operating on the virtualization software 1001. The
VM managing unit 1302 manages a virtual machine which
starts at the time of device startup, together with a VM for
executing DL application. Moreover, the VM managing unit
1302 uses a virtual machine management table 1350 shown in
FIG. 13, for the management of the virtual machines. The
virtual machine management table 1350 includes a virtual
machine ID for identifying a virtual machine, a status of a
virtual machine, an address range of a memory used by a
virtual machine, and a destination for storing a suspension
state at the time of suspending a virtual machine.

Upon receiving an OS process request from the virtual
machine operating on the virtualization software 1001, the
OS process request control unit 1303 requests a virtual
machine that is a “parent” of the requesting virtual machine to
execute the OS process. The OS process request control unit
1303 obtains, from the parent and child relationship manag-
ing unit 1304, information about the “parent” virtual
machine. It is to be noted that details of the OS request process
are described later with reference to a flow chart.

The parent and child relationship managing unit 1304 man-
ages the parent and child relationship between the virtual
machines based on notice from the application VM creating
unit 1300. The parent and child relationship managing unit
1304 manages the parent and child relationship using a parent
and child relationship management table 1360. F1G. 14 shows
a structure of the parent and child relationship management
table 1360. The parent and child relationship management
table 1360 includes an ID of a “parent” virtual machine (par-
ent virtual machine ID) and an ID of a “child” virtual machine
(child virtual machine ID). Moreover, each of the parent
virtual machine ID and the child virtual machine ID corre-
sponds to one of the IDs in the virtual machine management
table 1350.

The policy managing unit 1305 determines, for each of
functions achieved through the OS process request, whether
or not it is possible to request another virtual machine to
execute the OS process for the function. Specifically, when
receiving the OS process request from the virtual machine,
the policy managing unit 1305 determines whether or not to

US 9,081,596 B2

19

execute the OS process, based on a policy table 1370. As
shown in FIG. 15A, the policy table 1370 includes functions
and virtual machine IDs. All functions of devices are listed in
the function column, and virtual machine IDs each corre-
sponding to one of the functions are listed in the virtual
machine ID column. Here, regarding a function which cannot
be used by a DL application, a special 1D indicating use
prohibition (“0” in FIG. 15A) is stored as a virtual machine
1D.

It is to be noted that the policy table may be as shown in
FIG. 15B. A policy table 1371 shown in FIG. 15B includes
functions, and symbols each indicating whether or not one of
virtual machines is permitted to access one of the functions.
“Yes” in FIG. 15B indicates access granted, and “No” in FIG.
15B indicates access denied.

Although a policy is determined for each virtual machine
here, the present invention is not limited to this. The policy
may be determined for each DL application. In this case,
information for associating a DL application with a virtual
machine is added to the virtual machine management table
1350.

Although TV viewing, phone call, and play back of com-
mercial content are shown as examples of the functions in
FIGS. 15A and 15B, the functions are not limited to these. For
instance, to determine whether or not to send a process
request to a device driver, the policy managing unit 1305 may
store, into the policy table 1370 or 1371, information indicat-
ing whether or not use is prohibited for each device driver.
Moreover, the policy managing unit 1305 may store, into the
policy table 1370 or 1371, information indicating whether or
not use is prohibited for each inner function of an OS such as
a memory handling function. Furthermore, the policy man-
aging unit 1305 may store, into the policy table 1370 or 1371,
information obtained by combining the above information
items.

Moreover, because an OS process request among OS pro-
cess requests from a virtual machine is not essentially
received for a process to be executed inside an application
VMOS, use by a DL application may be prohibited when such
a process request is received. Examples of the process to be
executed inside the application VMOS include a process of
installing a downloaded device driver, a process of executing
a downloaded device driver, and a process concerning a func-
tion relevant to a memory map. It is to be noted that details of
the above are described later.

<Configuration of Universal OS 1011>

FIG. 16 is a block diagram showing the universal OS 1011
according to Embodiment 1 of the present invention.

In FIG. 16, the universal OS 1011 includes an application
load unit 1400, an application VM OS process receiving unit
1401, and a device driver A 1402.

Upon receiving, from the user, a request to start an appli-
cation, the application load unit 1400 performs an application
start process. The application load unit 1400 determines
whether or not the application of which start has been
requested by the user is a DL application. When the applica-
tion of which start has been requested by the user is the DL,
application, the application load unit 1400 requests the virtu-
alization software 1001 to create an application VM. When
the application of which start has been requested by the user
is not the DL application but a normal application, the appli-
cation load unit 1400 executes the application as an applica-
tion operating on the universal OS 1011.

Upon receiving the OS process request from the virtual-
ization software 1001, the application VM OS process receiv-
ing unit 1401 executes the requested OS process, and notifies
the virtualization software 1001 of the result of the executed

15

35

40

45

50

55

20

OS process. The application VM OS process receiving unit
1401 receives, from the virtualization software 1001, an iden-
tifier and a parameter for the OS process to be executed, and
execute the process according to the identifier. Moreover, the
application VM OS process receiving unit 1401 registers a
callback function for the virtualization software 1001 during
the initialization process for the universal OS 1011, and
receives an OS process request using the callback function.

It is to be noted that although the application VM OS
process receiving unit 1401 receives the OS process request
via the callback function, the present invention is not limited
to this. The present invention includes a mechanism which
may cause the virtualization software 1001 to send the request
to the universal OS 1011. For example, as a virtual hardware
function, the application VM OS process receiving unit 1401
may receive the OS process request through interrupt pro-
cessing dedicated for OS process request. Moreover, the
application VM OS process receiving unit 1401 may add a
system call dedicated for OS process request to the system
call of the universal OS 1011, and receive the OS process
request via the system call.

The device driver A1402 manages access to a hardware
attached to the device 110 or 111. The device driver A 1402
operates according to a request from an application which
operates in and on the universal OS 1011.

<Configuration of Application Load Unit 1400>

FIG. 17A is a block diagram showing the application load
unit 1400 according to Embodiment 1 of the present inven-
tion.

The application load unit 1400 shown by FIG. 17 includes
an application obtaining unit 1410, a determining unit 1411,
a load unit 1412, and a VM creation requesting unit 1413.

The application obtaining unit 1410 reads, from the non-
volatile memory device 1240, an application of which start
has been requested by the user.

The determining unit 1411 determines whether or not the
application of which start has been requested by the user is a
DL application. When the application of which start has been
requested by the user is not the DL application, the determin-
ing unit 1411 requests the load unit 1412 to load and start the
application. When the application of which start has been
requested by the user is the DL application, the determining
unit 1411 requests the VM creation requesting unit 1413 to
start the DL application.

As amethod of determining a DL application, for example,
the determining unit 1411 determines whether or not an
extension assigned to a file name of the application of which
start has been requested matches a predetermined extension
by comparing the extensions. An extension (predetermined
extension) used by the DL application is determined at the
time of system design, embedded in the universal OS 1011 in
advance, and used for the comparison.

It is to be noted that although the determining unit 1411
uses the extension for the determination of the DL applica-
tion, the present invention is not limited to this. For instance,
the DL application may be stored in a specific directory
(folder), and the determining unit 1411 may determine
whether or not a name of a directory (name of a folder) of the
application of which start has been requested matches a name
of the directory in which the DL application is stored, by
comparing the names. Moreover, information (identifier) for
indicating a DL application may be embedded in header
information of the DL application, and the determining unit
1411 may check whether or not the information exists. Fur-
thermore, the determining unit 1411 may determine whether
the application is the DL application by using information in
the public key certificate 3204 in the download package 3120

US 9,081,596 B2

21

of the DL application. Examples of such a determining
method include a method of determining whether or not infor-
mation for identitying a subject or issuer is information indi-
cating a specific enterprise, and a method of checking
whether a certificate serial number is composed of a specific
character string. Moreover, a DL application managing unit
which manages DL applications downloaded from the appli-
cation distribution server 120 may be provided, and the deter-
mining unit 1411 may determine whether the application of
which start has been requested is the DL application depend-
ing on whether or not the application is an application man-
aged by the DL application managing unit.

The load unit 1412 writes, into the memory 1220, the
application read by the application obtaining unit 1410, per-
forms processes necessary for starting the application (e.g.
analysis of header, setting of logical address, setting of stack,
and setting of entry point), and then executes the application.

Upon receiving the request to start the DL application from
the determining unit 1411, the VM creation requesting unit
1413 requests the virtualization software 1001 to create an
application VM. Moreover, at the time of the request, the VM
creation requesting unit 1413 transmits, to the virtualization
software 1001, the DL application to be executed on the
application VM.

It is to be noted that as shown by FIG. 17B, the application
load unit 1400 may include only the determining unit 1411,
the load unit 1412, and the VM creation requesting unit 1413.
In this case, the functions of the application obtaining unit
1410 may be included in the determining unit 1411, or may be
included in the application VM creating unit 1300 and the
load unit 1412 of the virtualization software 1001.

<Configurations of Application VMOSX 1021 and Appli-
cation VMOSY 1031>

Each of FIGS. 18 A and 18B is a block diagram showing an
application VMOS according to Embodiment 1 of the present
invention. FIG. 18A is the block diagram showing the con-
figuration of the application VMOSX 1021, and FIG. 18B is
the block diagram showing the configuration of the applica-
tion VMOSY 1031.

The application VMOSX 1021 shown by FIG. 18A
includes an OS process requesting unit 1500 and a device
driver B 1501.

Upon receiving an OS process request from the DL appli-
cation X 1022 operating on the application VMOSX 1021, the
OS process requesting unit 1500 requests the virtualization
software 1001 to execute the OS process. Here, when the OS
process request is a process request for the device driver B
1501, the process request is sent not to the virtualization
software 1001 but directly to the device driver B 1501 from
within the application VMOSX 1021.

The device driver B 1501 is a device driver operating
within the application VMOSX 1021, and is used not by other
applications but by only the DL application X 1022.

The application VMOSY 1031 shown by FIG. 18B
includes the OS process requesting unit 1500.

It is to be noted that although the device driver B 1501 is
used not by the other applications but by only the DL appli-
cation X 1022, the present invention is not limited to this. For
instance, the DL application’Y 1032 may use the device driver
B 1501. In this case, the application VMOSY 1031 further
includes the device driver B 1501. The DL application’Y 1032
uses the device driver B 1501 included in the application
VMOSY 1031.

Upon receiving an OS process request from the DL appli-
cation X 1032 operating on the application VMOSX 1031, the
OS process requesting unit 1500 requests the virtualization
software 1001 to execute the OS process. Since the applica-

20

25

35

40

45

50

55

22
tion VMOSY 1031 has no device driver inside, the OS pro-
cess requesting unit 1500 requests the virtualization software
1001 to execute all OS process.

<Configuration of OS Process Requesting Unit 1500>

FIG. 19A is a block diagram showing the OS process
requesting unit 1500 according to Embodiment 1 of the
present invention.

The OS process requesting unit 1500 shown by FIG. 19A
includes an OS process receiving unit 1510, a request deter-
mining unit 1511, an internal processing unit 1512, and a
requesting unit 1513.

The OS process receiving unit 1510 receives an OS process
request from a DL application.

The request determining unit 1511 determines whether the
requested OS process is a process to be executed within an
application VMOS or a process to be requested to the virtu-
alization software 1001. When determining that the requested
OS process is the process to be executed internally, the
request determining unit 1511 requests the internal process-
ing unit 1512 to execute the process. Moreover, when deter-
mining that the requested OS process is the process to be
requested to the virtualization software 1001, the request
determining unit 1511 requests the requesting unit 1513 to
execute the process.

The internal processing unit 1512 calls the process
requested by the DL application, and feeds back the process-
ing result to the DL application.

The requesting unit 1513 requests the virtualization soft-
ware 1001 to execute the OS process. Moreover, the request-
ing unit 1513 feeds back, to the DL application, a result
obtained from the virtualization software 1001.

Examples ofa process determined by the request determin-
ing unit 1511 as the process to be executed inside the appli-
cation VMOS include the process of installing a downloaded
device driver, the process of executing a downloaded device
driver, and the process concerning a function relevant to a
memory map.

It is to be noted that the OS process requesting unit 1500
determines whether or not the OS process request is the
process to be executed internally, the present invention is not
limited to this. Like the OS process requesting unit 1500
shown by FIG. 19B, the virtualization software 1001 may be
requested to execute all processes without determining
whether or not each requested OS process is the process to be
executed internally.

<Application VM Creation Process>

The universal OS 1011 and the virtualization software
1001 perform an application VM creation process so that the
universal OS 1011 and the virtualization software 1001 cause
a DL application to operate on an application VMOS in coop-
eration with each other.

The following describes an application VM creation pro-
cess at the time when the universal OS 1011 requests the
virtualization software 1001 to create an application VM,
with reference to a flow chart shown in FIG. 20.

In response to an application execution request from the
user, the universal OS 1011 performs an application start
process. First, the application load unit 1400 of the universal
OS 1011 obtains the application of which execution has been
requested, from the nonvolatile memory device 1240
(S1100), and writes the obtained application into the memory
1220.

The application load unit 1400 determines whether or not
the obtained application is a DL application (S1101). When
the obtained application is the DL application, the application

US 9,081,596 B2

23
load unit 1400 determines “YES”, and when the obtained
application is not the DL application, the application load unit
1400 determines “NO”.

When the application load unit 1400 determines “YES” in
step S1101, the application load unit 1400 requests the virtu-
alization software 1001 to create a VM (application VM) for
executing the application of which execution has been
requested. Here, the application load unit 1400 sends, to the
virtualization software 1001, the obtained application
together with the request.

Upon receiving the application VM creation request, the
application VM creating unit 1300 of the virtualization soft-
ware 1001 reserves, on the memory 1220, a memory area for
an application VM to be created, reads the application-ex-
ecuting VM 1241 from the nonvolatile memory device 1240,
and writes the VM main portion 1311 into the reserved
memory area (S1102). Subsequently, the application VM cre-
ating unit 1300 generates a verification value from the written
VM main portion 1311 so as to verify whether the correct VM
main portion 1311 is written. Next, the application VM cre-
ating unit 1300 compares the generated verification value
with the verification value 1312 of the application-executing
VM 1241, and verifies whether or not the verification values
match each other. When the generated verification value does
not match the verification value 1312 of the application-
executing VM 1241, the application VM creating unit 1300
stops creating the application VM.

It is to be noted that although the application VM creating
unit 1300 verifies the verification value 1312 after writing the
VM main portion 1311 into the memory 1220, the present
invention is not limited to this. For instance, the application
VM creating unit 1300 may calculate a verification value of
the VM main portion 1311 before reading the application-
executing VM 1241 from the nonvolatile memory device
1240, and verify whether or not the calculated verification
value matches the verification value 1312.

Moreover, when the application VM creating unit 1300
creates virtual machines for respective DL applications, the
application VM creating unit 1300 uses the OS 1315 in com-
mon. For example, the application VM creating unit 1300
creates, using the OS 1315, both the application VMOSX
1021 of the virtual machine 1003 which executes the DL
application X 1022 and the application VMOSY 1031 of the
virtual machine 1004 which executes the DL application Y
1032. Specifically, when both the DL application X 1022 and
the DL application Y 1032 do not include the DL device
driver, the application VMOSX 1021 and the application
VMOSY 1031 have the same function. Moreover, when the
DL application X 1022 includes the DL device driver, the
application VM creating unit 1300 creates the application
VMOSX 1021 by adding a function of the DL device driver to
the OS 1315.

Here, as stated above, the device 110 according to Embodi-
ment 1 of the present invention creates the virtual machines
for the respective DL applications, and causes the virtual
machines to execute the DL applications. Consequently, an
OS is required for each application, which leads to a problem
that a capacity of the nonvolatile memory device 1240 for
storing the OSs needs to be increased. In response, the appli-
cation VM creating unit 1300 creates the OS for each appli-
cation, using the common OS 1315. This makes it only nec-
essary to store only the single OS 1315 in the nonvolatile
memory device 1240, and thus it is possible to reduce the
capacity of the nonvolatile memory device 1240.

Next, the application VM creating unit 1300 writes, into the
memory 1220, the application received from the universal OS
1011 (S1103). Moreover, the application VM creating unit

10

15

20

25

30

35

40

45

50

55

60

65

24

1300 refers to, as a write address, an address described in the
header information 1310 of the application-executing VM
1241. Furthermore, the application VM creating unit 1300
registers, in the VM managing unit 1302, the application VM
created from the application-executing VM 1241 and the
application, and assigns, to the created application VM, an ID
for identitying the application VM (virtual machine).

Next, the application VM creating unit 1300 obtains an ID
(ID 1) of a virtual machine which executes the universal OS
1011 requesting the VM creation process, and an ID (ID 2) of
the created application VM. Moreover, the application VM
creating unit 1300 stores, into the parent and child relation-
ship managing unit 1304, a parent and child relationship in
which the ID 1 refers to a “parent” and the ID 2 refers to a
“child” (S1104).

Next, the application VM creating unit 1300 requests the
VM managing unit 1302 to execute the created application
VM. This enables the VM managing unit 1302 to execute the
application VM (S1105). In the executed application VM, the
application VMOS is executed, and further the DL applica-
tion is executed.

On the other hand, when the application load unit 1400
determines “NO” in step S1101, the application load unit
1400 registers, in the universal OS 1011, the obtained appli-
cation as an application which operates on the universal OS
1011, and executes the application (S1106).

<Processing at Time of OS Process Request>

When the application VMOSX 1021 or the application
VMOSY 1031 receives an OS process request from a corre-
sponding one of the DL applications X 1022 and Y 1032
which operate on the respective applications VMOSX 1021
and VMOSY 1031, the application VMOSX 1021 or the
application VMOSY 1031 requests the virtualization soft-
ware 1001 to execute the OS process. Upon receiving the OS
process request, the virtualization software 1001 requests the
universal OS 1011 which is capable of executing the OS
process to execute the OS process.

The following describes processing of an OS process
request from an DL application with reference to a flow chart
shown by FIG. 21. Hereinafter, a case is described where the
universal OS 1011 handles an OS process request from the
DL application X 1022 operating on the application VMOSX
1021. Here, it is assumed that the virtual machine ID of the
virtual machine 1002 operated by the universal OS 1011 is
“17, and that the virtual machine ID of the virtual machine
1003 operated by the application VMOSX 1021 and the DL,
application X 1022 is “3”. It is also assumed that a set of the
parent virtual machine ID “1” and the child virtual machine
1D “3” is registered in the parent and child relationship man-
agement 1360 as shown by FIG. 14.

In FIG. 21, the DL application X 1022 issues a system call
such as access to a device, to request the application VMOSX
1021 to execute an OS process. The requested application
VMOSX 1021 determines whether the requested OS process
is a process to be executed inside the application VMOSX
1021 or a process of requesting another virtual machine
(S1200). The application VMOSX 1021 determines “YES”
when it is determined that the requested OS process is the
process to be executed inside the application VMOSX 1021,
and “NO” when it is determined otherwise.

Specifically, the application VMOSX 1021 determines
whether or not the application VMOSX 1021 successfully
executes the requested OS process. For instance, when the
application VMOSX 1021 includes functions of a DL device
driver and the requested OS process is a process of the DL
device driver, the application VMOSX 1021 determines that
the application VMOSX 1021 successfully executes the OS

US 9,081,596 B2

25

process (the OS process is the process to be executed inside
the application VMOSX 1021). Moreover, when the
requested OS process is other than the process of the DL
device driver, the application VMOSX 1021 determines that
the application VMOSX 1021 fails to execute the OS process
(the OS process is the process of requesting the other virtual
machine).

When determining “NO” in step S1200, the application
VMOSX 1021 requests the virtualization software 1001 to
execute the OS process. The OS process request control unit
1303 of the virtualization software 1001 checks with the
parent and child relationship managing unit 1304 so as to
determine which virtual machine is a virtual machine thatis a
“parent” of the virtual machine having requested the OS
process, and obtains the identifier of the “parent” virtual
machine (S1201). The checked parent and child relationship
managing unit 1304 searches the child virtual machine 1D
column of the parent and child relationship management
1360 for the ID (in this case “3”) of the virtual machine having
requested the OS process. Then, the parent and child relation-
ship managing unit 1304 obtains a parent virtual machine ID
(in this case ““1””) that is managed with the searched ID as a set,
and notifies the OS process request control unit 1303 of the
obtained parent virtual machine ID.

Next, the OS process request control unit 1303 requests the
policy managing unit 1305 to check whether the requested OS
process complies with a policy. The requested policy manag-
ing unit 1305 checks the compliance with the policy with
reference to the policy table 1370 (S1202). Moreover, the
policy managing unit 1305 obtains, from the policy table
1370, a virtual machine ID of a virtual machine providing the
function, and checks whether the virtual machine ID is a
special ID indicating use prohibition (in the case shown by
FIG. 15A, “0”). When the virtual machine ID is the special
1D, the policy managing unit 1305 feeds back “NO” as the
check result. Moreover, when the virtual machine ID is not
the special ID, the policy managing unit 1305 feeds back
“YES” as the check result.

The OS process request control unit 1303 determines
whether the check result in step S1202 indicates “YES”
(S1203).

When determining “YES” in step S1203, the OS process
request control unit 1303 requests the universal OS 1011
operating on the virtual machine 1002 that is the “parent” to
execute the OS process.

The universal OS 1011 executes the requested OS process
(S81204), and notifies the universal OS 1001 of the result of the
executed OS process. The virtualization software 1001 noti-
fies the application VMOSX 1021 of the notified result. The
application VMOSX 1021 further notifies the DL application
X 1022 of the notified result.

In contrast, when determining “NO” in step S1203, the OS
process request control unit 1303 notifies the application
VMOSX 1021 of an error as the result.

Moreover, when determining “YES” in step S1200, the
application VMOSX 1021 executes the OS process internally
(81205). Then, the application VMOSX 1021 notifies the DL,
application X 1022 of the result of the executed OS process.

It is to be noted that although the case is described where
the DL application X 1022 requests the OS process and the
universal OS 1011 executes the OS process, the present
invention is not limited to the case. For example, an applica-
tion operating on another application VM may request the OS
process, and an OS other than the universal OS 1011 may
execute the OS process.

Here, as stated above, the device 110 according to Embodi-
ment 1 of the present invention creates the virtual machines

10

15

20

25

30

35

40

45

50

55

60

65

26

for the respective DL applications, and causes the virtual
machines to execute the DL applications. Consequently, an
OS is required for each virtual machine, which leads to a
problem that a capacity of necessary hardware (e.g. a
memory) needs to be increased. In response, in the device 110
according to Embodiment 1 of the present invention, the
virtual machine created for the DL application requests
another virtual machine to execute the OS process which the
OS of the virtual machine fails to execute. Accordingly, the
function of the OS of the virtual machine created for the DL
application can be eliminated, and thus the capacity of the
necessary hardware can be reduced. For instance, the OS may
achieve only the function of requesting an OS process and the
function of a DL device driver.

<Block Diagram of Application-Executing VM Creating
Device 1600>

FIG. 22 is a block diagram showing an application-execut-
ing VM creating device 1600 according to Embodiment 1 of
the present invention.

The application-executing VM creating device 1600
shown by FIG. 22 includes a stop code before application
execution inserting unit 1601, a VM creating unit 1602, a VM
executing unit 1603, and a dedicated VM creating unit 1604.
The application-executing VM creating device 1600 receives
aVM source code 1610, and creates an application-executing
VM 1620. The application-executing VM 1620 is stored as
the application-executing VM 1241 into the nonvolatile
memory device 1240 in the device 110 or 111.

The VM source code 1610 includes a source code of an
application VMOS and configuration information of a virtual
hardware. A string (stop identifier) (e.g. “PRE_APP_
EXEC:”) is inserted in the source code of the application
VMOS immediately before the application VMOS loads, to
the memory 1220, an application which operates on the appli-
cation VMOS, the string indicating that the application
VMOS loads, to the memory 1220, the application.

The stop code before application execution inserting unit
1601 detects the stop identifier inserted in the VM source code
1610, and replaces the stop identifier with a notification com-
mand (hypercall or hypervisor call) from the application
VMOS to the virtualization software 1001.

The VM creating unit 1602 creates an executable image file
of a VM by performing a compilation process and a link
process on the VM source code 1610.

The VM executing unit 1603 has a function equivalent to
that of the virtualization software 1001, and executes the
executable image file of the VM. The VM of which executable
image file is executed first performs a process up to the
notification command which is embedded instead of the stop
identifier, and then performs a notification process to the VM
executing unit 1603. Upon receiving the notification, the VM
executing unit 1603 terminates the process of the VM.

The dedicated VM creating unit 1604 creates the VM main
portion 1311 of the application-executing VM 1620 from a
state (data on a memory, a value of a register of a CPU, and so
on) of the stopped VM and the executable image file of the
VM. Furthermore, the dedicated VM creating unit 1604 gen-
erates the header information 1310 and the verification value
1312, and creates the application-executing VM 1620 by
combining the header information 1310 and the verification
value 1312.

The application-executing VM 1620 includes a VM image
file stopped in a state immediately before an application is
loaded after the application VMOS starts.

It is to be noted that, here, although the stop identifier is
inserted immediately before the application is loaded to the
memory 1220, the present invention is not limited to this. For

US 9,081,596 B2

27

instance, the stop identifier may be inserted immediately after
the application is loaded to the memory 1220.

Moreover, here, although the stop code before application
execution inserting unit 1601 replaces the stop identifier with
the notification command (hypercall), the present invention is
not limited to this. For example, the stop code before appli-
cation execution inserting unit 1601 may automatically detect
a position at which the file is stopped, by analyzing the VM
source code 1610, and insert the notification command in the
detected position. The notification command may be not the
hypercall but a breakpoint command or dedicated interrupt
command.

As described above, according to Embodiment 1 of the
present invention, the universal OS 1011 determines whether
the application to be executed is the DL application, when
executing the application, and causes the DL application to
operate on the virtual machine (application VM) for the DL
application, when determining that the application is the DL
application. Consequently, it is possible to prevent the DL
application from accessing the data used by another applica-
tion operating on the universal OS 1011 and another DL
application.

Moreover, the device 110 dynamically creates the applica-
tion VM at the time of executing the DL application, and thus
the application VM does not always occupy the memory
1220. Furthermore, the application VMOS is configured to
request the virtualization software 1001 to execute the OS
process, and thus it is possible to reduce the size of the
application VMOS. As aresult, it is possible to reduce the size
of the memory 1220 used when executing the application
VM. Thus, the application distribution system 100 according
to Embodiment 1 of the present invention can be applied to
cellular phones having scarce resources such as a memory
and home electric appliances such as TVs.

Moreover, commonalizing the application VMOS of the
virtual machine for executing the DL application makes it
possible to reduce an amount of OS data to be stored.

The application VMOS determines whether to (i) request
the virtualization software 1001 to execute the OS process or
(i) execute the OS process internally. As a result, processes
which become, if performed by the universal OS 1011, prob-
lematic in terms of security are successfully executed inside
the application VMOS. Thus, even when the DL application
is an attack application, it is possible to prevent the DL appli-
cation from attacking the universal OS 1011. Moreover, when
the virtualization software 1001 receives the OS process
request, the virtualization software 1001 and the application
VMOS each determine whether a process which becomes
problematic in terms of the security is a process to be origi-
nally executed inside the application VMOS. Consequently,
in comparison with the case where only the application
VMOS makes the determination, it is possible to further
increase the security.

As described above, the application distribution system
100 according to Embodiment 1 of the present invention
makes it possible to prevent the malicious application and the
malicious device driver from leaking and tampering with the
information assets. Consequently, the user can safely use the
device.

Embodiment 2

Embodiment 2 of the present invention describes a con-
figuration in which a function of causing the universal OS
1011 to execute an OS process of an application VM is not
included, as opposed to the configuration described in
Embodiment 1 of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

28

The following describes configurations and creation pro-
cesses of the virtualization software 1001 and the universal
0S 1011 according to Embodiment 2 of the present invention.
It is to be noted that the same reference signs are assigned to
the same components and processes as those in Embodiment
1 of the present invention, and descriptions thereof are omit-
ted.

<Configuration of Virtualization Software 1001>

FIG. 23 is a block diagram showing the virtualization soft-
ware 1001 according to Embodiment 2 of the present inven-
tion.

The virtualization software 1001 shown by FIG. 23
includes the application VM creating unit 1300, the applica-
tion-executing VM obtaining unit 1301, and the VM manag-
ing unit 1302.

Upon receiving, from a virtual machine which operates on
the virtualization software 1001, a request to create a VM
(application VM), the application VM creating unit 1300
creates a VM (application VM) for executing DL application
from an application-executing VM and a DL application
transmitted from the virtual machine. Moreover, the applica-
tion VM creating unit 1300 requests the VM managing unit
1302 to manage the created virtual machine. Here, unlike
Embodiment 1 of the present invention, the application VM
creating unit 1300 neither recognizes a parent and a child nor
registers the parent and the child in the parent and child
relationship managing unit.

It is to be noted that the application-executing VM obtain-
ing unit 1301 and the VM managing unit 1302 are the same as
those described in Embodiment 1 of the present invention.

<Configuration of Universal OS 1011>

FIG. 24 is a block diagram showing the universal OS 1011
according to Embodiment 2 of the present invention.

The universal OS 1011 shown by FIG. 24 includes the
application load unit 1400 and the device driver A 1402.
Unlike Embodiment 1 of the present invention, the universal
OS 1011 does not receive, from another virtual machine, an
OS process request, and thus does not have a necessary func-
tion of receiving an OS process request.

The application load unit 1400 and the device driver A
1402 are the same as those described in Embodiment 1 of the
present invention.

In Embodiment 2 of the present invention, the application
VMOSX 1021 and the application VMOSY 1031 have the
same configuration as the universal OS 1011. It is to be noted
that the application load unit 1400 may have the same con-
figuration as the universal OS 1011, that in the configuration
shown by FIG. 17A, the application load unit 1400 may not
include the determining unit 1411 and the VM creation
requesting unit 1413, and may cause the load unit 1412 to
load, after the application obtaining unit 1410 obtains an
application, the application on an application VMOS, and that
the application load unit 1400 may have a configuration in
which an application operating on an application VMOS is
prohibited from starting another application.

<Application VM Creation Process>

An application VM creation process according to Embodi-
ment 2 of the present invention is largely the same as the
application VM creation process (FIG. 20) according to
Embodiment 1 of the present invention.

However, the virtualization software 1001 according to
Embodiment 2 of the present invention has no function of
controlling an OS process request from an application VM,
and thus does not register the parent and child relationship in
step S1104. As aresult, the application VM creating unit 1300
creates the application VM from the application-executing
VM and the DL application (S1102 and S1103), registers the

US 9,081,596 B2

29

created application VM in the VM managing unit 1302, and
then requests the VM managing unit 1302 to execute the
created application VM. The requested VM managing unit
1302 executes the application VM (S1105).

It is to be noted that processes other than the above are the
same as those in Embodiment 1 of the present invention.

As described above, according to Embodiment 2 of the
present invention, the universal OS 1011 determines whether
the application to be executed is the DL application, when
executing the application, and causes the DL application to
operate on the virtual machine (application VM) for the DL
application, when determining that the application is the DL
application. Thus, the application distribution system 100
according to Embodiment 2 of the present invention makes it
possible to prevent the DL application from accessing the
data used by the application operating on the universal OS
1011 or another DL application.

As described above, the application distribution system
100 according to Embodiment 2 of the present invention
makes it possible to prevent the malicious application and the
malicious device driver from leaking and tampering with the
information assets. Consequently, the user can safely use the
device.

Embodiment 3

Embodiment 3 of the present invention describes a con-
figuration in which a function of creating a virtual machine is
not included, as opposed to the configuration described in
Embodiment 1 of the present invention.

The following describes configurations and creation pro-
cesses of the virtualization software 1001 and the universal
0S 1011 according to Embodiment 3 of the present invention.
It is to be noted that the same reference signs are assigned to
the same components and processes as those in Embodiment
1 of the present invention, and descriptions thereof are omit-
ted.

<Configuration of Virtualization Software 1001>

FIG. 25 is a block diagram showing the virtualization soft-
ware 1001 according to Embodiment 3 of the present inven-
tion.

The virtualization software 1001 shown by FIG. 25
includes the VM managing unit 1302, the OS process request
control unit 1303, the parent and child relationship managing
unit 1304, and the policy managing unit 1305.

It is to be noted that the VM managing unit 1302, the OS
process request control unit 1303, the parent and child rela-
tionship managing unit 1304, and the policy managing unit
1305 are the same as those described in Embodiment 1 of the
present invention.

<Configuration of Universal OS 1011>

FIG. 26 is a block diagram showing the universal OS 1011
according to Embodiment 3 of the present invention.

The universal OS 1011 shown by FIG. 26 includes the
application VM OS process receiving unit 1401 and the
device driver A 1402.

The application VM OS process receiving unit 1401 and
the device driver A 1402 are the same as those described in
Embodiment 1 of the present invention.

Itisto be noted that although the present invention has been
described based on the embodiments, it goes without saying
that the present invention is not limited to the embodiments.
The present invention includes the following cases.

(1) Although the DL application according to the embodi-
ments is downloaded from the application distribution server
120, the present invention is not limited to this. For instance,
the DL application may be an application installed from an

10

15

20

25

30

35

40

45

50

55

60

65

30

apparatus for development or a PC connected through a USB,
or may be originally installed at the time of shipment of the
device 110.

(2) The software configuration of each of the devices 110
and 111 according to the embodiments may not include the
virtual machine 1005 including the RTOS 1041, or may
include virtual machines 1002 each of which includes the
universal OS 1011 or virtual machines 1005 each of which
includes the RTOS 1041. Moreover, the software configura-
tion may include a virtual machine which does not include an
OS, or a virtual machine on which an application involving an
OS function operates. Furthermore, these virtual machines
may request the virtualization software 1001 to create an
application VM. Here, each of the virtual machines is regis-
tered as a separate parent in the parent and child relationship
managing unit 1304.

(3) Although the application VM according to the embodi-
ments is loaded to the memory 1220 at the time of executing
the DL application, and is executed, the present invention is
not limited to this. For example, the virtualization software
1001 may load only the application-executing VM 1241 to the
memory 1220 prior to the execution of the DL application,
and load the DL application to the memory 1220 at the time of
executing the DL application. Moreover, the virtualization
software 1001 may load the application-executing VM 1241
and the DL application to the memory 1220 before the execu-
tion of the DL application.

(4) Although the application-executing VM 1241 accord-
ing to the embodiments includes the VM image file stopped,
using the application-executing VM creating device 1600, in
a state immediately before the application is loaded after the
application VMOS starts, the present invention is not limited
to this. For instance, the application-executing VM 1241 may
include a VM image file in a state before the application
VMOS starts. Here, the application VMOS may start for each
DL application, or an application VM stopped in a state
immediately before the application is loaded may be started
in advance, the application VM stopped in the state immedi-
ately before the application is loaded may be copied at the
time of executing the DL application, and the copied appli-
cation VM may execute the DL application.

(5) Each of the above devices is specifically a computer
system including, for instance, a microprocessor, a ROM, a
RMA, a hard disk unit, a display unit, a keyboard, and a
mouse. A computer program is stored in the RAM or the hard
disk unit. The microprocessor operates according to the com-
puter program, so that each device performs a corresponding
function. Here, in order to perform a predetermined function,
the computer program is programmed by combining instruc-
tion codes each indicating an instruction for a computer.

(6) Part or all of the elements included in each device may
be included in one system LSI (Large Scale Integration). The
system LSI is a super-multifunctional L.SI manufactured by
integrating the elements on one chip, and is specifically a
computer system including a microprocessor, a ROM, a
RAM, and so on. A computer program is stored in the RAM.
The microprocessor operates according to the computer pro-
gram, so that the system L.SI performs its function.

Moreover, the elements included in each device may be
integrated into individual chips, or into a single chip so as to
include part or all of the elements.

Here, although an integrated circuit is referred to as the
system LSI, the integrated circuit may also be referred to as an
IC, an LSI, a super LS], or an ultra LSI. In addition, a circuit
integration method is not limited to the LSI, and may be
realized with a dedicated circuit or a general-purpose proces-
sor. FPGA (Field Programmable Gate Array) that can be

US 9,081,596 B2

31

programmed after the manufacture of the LSI or a reconfig-
urable processor which can reconfigure connection or setting
of circuit cells in the L.SI may be used.

Additionally, if a new circuit integration technique is intro-
duced in place of the LSI along with development in semi-
conductor technology or other derivative technology, it is
obvious that the technique may be used for integrating func-
tional blocks. There is a possibility of applying biotechnology
and the like.

(7) Part or all of the elements included in each device may
be included in an IC card detachable to each device or in a
stand-alone module. The IC card or the module is a computer
system including a microprocessor, a ROM, a RAM, and so
on. The IC card or the module may include the super-multi-
functional LSI. The microprocessor operates according to a
computer program, so that the IC card or the module performs
its function. The IC card or the module may have tamper-
resistance.

(8) The present invention may be any of the above methods.
Moreover, the present invention may be a computer program
which causes a computer to perform these methods or a
digital signal included in the computer program.

Furthermore, in the present invention, the computer pro-
gram or the digital signal may be recorded on a computer-
readable recording medium such as a flexible disk, a hard
disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-
RAM, a BD (Blu-ray Disc), and a semiconductor memory. In
addition, the present invention may be the digital signal
recorded on these recording media.

Moreover, in the present invention, the computer program
or the digital signal may be transmitted via an electric tele-
communication line, a wireless or wired telecommunication
line, a network represented by the Internet, data broadcasting,
or the like.

Furthermore, the present invention may be a computer
system including a microprocessor and a memory. The com-
puter program may be stored in the memory, and the micro-
processor may operate according to the computer program.

Moreover, by recording the program or the digital signal on
the recording medium to transfer it, or by transferring the
program or the digital signal via the network or the like, the
present invention may be implemented on another indepen-
dent computer system.

(9) The embodiments and the modifications may be com-
bined.

INDUSTRIAL APPLICABILITY

The present invention can be applied to information pro-
cessing devices which use downloaded applications and
device drivers. In addition, the present invention is useful to,
for example, cellular phones and home electric appliances
such as televisions which include the information processing
devices.

REFERENCE SIGNS LIST

10 Hardware

20, 1001 Virtualization software

30, 40, 70, 80, 1002, 1003, 1004, 1005 Virtual machine
60 VMM

72,1315 OS

90 VM creating device

100 Application distribution system

110, 111 Device

120 Application distribution server

130 Apparatus for development

10

15

20

25

30

35

40

45

55

60

65

32

1000 Normal software execution environment (normal
environment)

1010, 1020, 1030, 1040, 1316 Virtual hardware

1011 Universal OS

1012 Download control application

1013 Application A

1014 Application B

1021 Application VMOSX

1022, 1242 DL application X

1031 Application VMOSY

1032, 1243 DL application Y

1041 RTOS

1042 Phone call software

1100 Secure software execution environment (secure envi-
ronment)

1101 Secure OS

1102 Secure boot unit

1200 System LSI

1201 CPU

1202 IPL (Initial Program Loader)

1203 Execution environment switching unit

1204 Internal secure memory

1220 Memory

1240 Nonvolatile memory device

1241, 1620 Application-executing VM

1300 Application VM creating unit

1301 Application-executing VM obtaining unit

1302 VM managing unit

1303 OS process request control unit

1304 Parent and child relationship managing unit

1305 Policy managing unit

1310 Header information

1311 VM main portion

1312 Verification value

1350 Virtual machine management table

1360 Parent and child relationship management

1370, 1371 Policy table

1400 Application load unit

1401 Application VM OS process receiving unit

1402 Device driver A

1410 Application obtaining unit

1411 Determining unit

1412 Load unit

1413 VM creation requesting unit

1500 OS process requesting unit

1501 Device driver B

1510 OS process receiving unit

1511 Request determining unit

1512 Internal processing unit

1513 Requesting unit

1600 Application-executing VM creating device

1601 Stop code before application execution inserting unit

1602 VM creating unit

1603 VM executing unit

1604 Dedicated VM creating unit

1610 VM source code

2000 Application holding unit

2001 Application reception processing unit

2002 Application transmission processing unit

3000 Package generating unit

3001 Configuration file generating unit

3002 Key pair holding unit

3003 Key pair generating unit

3004 Debug processing unit

3005 Upload processing unit

3100 Compiler

3101 Linker

US 9,081,596 B2

33

3102 Package generation tool
3110 Source code

3120 Download package

3130 Private key

3131, 3204 Public key certificate
3132, 3202 Configuration file
3200 Application

3201 Device driver

3203 Application signature list
The invention claimed is:

1. An information processing device having a plurality of

virtual machines, said information processing device com-
prising:

a processor; and

a virtual machine managing unit configured to manage,
using the processor, the virtual machines,

wherein said virtual machine managing unit includes an
application virtual machine (VM) creating unit config-
ured to create a virtual machine for executing a program,

a first virtual machine includes first virtual hardware and a
first operating system (OS) and determines whether a
first program is to be executed on the first virtual
machine or to be executed on a second virtual machine,
the first virtual machine being one of the virtual
machines, and the first program being executable on the
first virtual machine,

said application VM creating unit is configured to create
the second virtual machine, when the first virtual
machine determines that the first program is to be
executed on the second virtual machine,

when the first program is a program downloaded from
another device, the first virtual machine determines that
the first program is to be executed on the second virtual
machine,

the second virtual machine includes second virtual hard-
ware and a second OS having only part of functions of
the first OS, and executes the first program,

the second virtual machine includes an OS process request-
ing unit configured to, when an OS process inexecutable
on the second OS is requested by the first program, send,
to said virtual machine managing unit, an OS process
request for requesting the first virtual machine to execute
the OS process,

said virtual machine managing unit further includes:

an OS process request control unit configured to request
the first virtual machine to execute the OS process, when
said virtual machine managing unit receives the OS pro-
cess request from the second virtual machine; and

a policy managing unit configured to hold information
indicating, among functions of said information pro-
cessing device, a function of prohibiting the second vir-
tual machine from requesting the first virtual machine to
execute the OS process, and determine, based on the
information, whether or not it is possible for the second
virtual machine to request the first virtual machine to
execute the OS process,

said OS process request control unit is configured to
request the first virtual machine to execute the OS pro-
cess, when said policy managing unit determines that it
is possible for the second virtual machine to request the
first virtual machine to execute the OS process,

said OS process requesting unit is configured to determine
whether or not the OS process requested by the first
program is executable by a device driver software pro-
gram included in the second virtual machine,

when the OS process requested by the first program is
executable by the device driver software program, the

10

15

20

30

35

40

45

50

55

65

34

OS process requested by the first program is executed
within the second virtual machine, and

when the OS process requested by the first program is not
executable by the device driver software program, the
first virtual machine is requested to execute the OS pro-
cess requested by the first program.

2. The information processing device according to claim 1,

wherein when the first program includes a device driver
software program obtained from another device, the first
virtual machine determines that the first program is to be
executed on the second virtual machine.

3. The information processing device according to claim 2,

further comprising

a storage unit configured to store an OS program for VM,

wherein the first virtual machine further determines
whether a second program is to be executed on the first
virtual machine or to be executed on a third virtual
machine, the second program being different from the
first program and executable on the first virtual machine,
and

said application VM creating unit is configured to (i) create
the third virtual machine, when the first virtual machine
determines that the second program is to be executed on
the third virtual machine, and (ii) create, using the OS
program for VM, an operating system for the second
virtual machine and an operating system for the third
virtual machine.

4. The information processing device according to claim 3,

wherein the second virtual machine includes a VM image
file stopped in a state immediately before a program is
loaded after an operating system for a virtual machine
starts.

5. The information processing device according to claim 1,

further comprising

a storage unit configured to store an OS program for VM,

wherein the first virtual machine further determines
whether a second program is to be executed on the first
virtual machine or to be executed on a third virtual
machine, the second program being different from the
first program and executable on the first virtual machine,
and

said application VM creating unit is configured to (i) create
the third virtual machine, when the first virtual machine
determines that the second program is to be executed on
the third virtual machine, and (ii) create, using the OS
program for VM, an operating system for the second
virtual machine and an operating system for the third
virtual machine.

6. The information processing device according to claim 5,

wherein the second virtual machine includes a VM image
file stopped in a state immediately before a program is
loaded after an operating system for a virtual machine
starts.

7. The information processing device according to claim 1,

wherein said virtual machine managing unit further
includes a parent and child relationship managing unit
configured to manage a parent and child relationship of
the virtual machines,

said parent and child relationship managing unit is config-
ured to manage a parent and child relationship in which
the first virtual machine that requests the creation of the
second virtual machine is a parent and the second virtual
machine created according to the request is a child, and

said OS process request control unit is configured to
request the first virtual machine to execute the OS pro-
cess, when said virtual machine managing unit receives
the OS process request from the second virtual machine,

US 9,081,596 B2

35

the first virtual machine being managed as the parent of

the second virtual machine.

8. The information processing device according to claim 1,

wherein said OS process requesting unit is configured to (i)
determine that the second virtual machine executes the
OS process, when the first program includes the device
driver software program obtained from the other device
and the device driver software program can execute the
OS process, and (i) send the OS process request to said
virtual machine managing unit when the device driver
software program cannot execute the OS process.

9. The information processing device according to claim 1,

wherein the OS process request control unit is configured

to request the first virtual machine to execute the OS
process, using a callback function, dedicated interrup-
tion, or a system call.

10. An application distribution system which distributes a
program via a network, said application distribution system
comprising:

said information processing device according to claim 1;

and

an application distribution server,

wherein said application distribution server includes:

an application holding unit configured to hold a program
to be distributed; and

an application transmission processing unit configured
to transmit the program to said information process-
ing device, and

when the first program is the program transmitted by said

application transmission processing unit, the first virtual
machine determines that the first program is to be
executed on the second virtual machine.

11. A virtual machine creation method performed by an
information processing device which has a plurality of virtual
machines and includes a virtual machine managing unit that
manages the virtual machines, said virtual machine creation
method comprising:

creating a virtual machine for executing a program, said

creating being performed by the virtual machine man-
aging unit;
determining whether a first program is to be executed on a
first virtual machine including first virtual hardware and
a first operating system (OS) or to be executed on a
second virtual machine, said determining being per-
formed by the first virtual machine, the first virtual
machine being one of the virtual machines, and the first
program being executable on the first virtual machine,

wherein when the first virtual machine determines that the
first program is to be executed on the second virtual
machine, the second virtual machine for executing the
first program is created in said creating,

said virtual machine creation method further comprising:

determining that the first program is to be executed on the

second virtual machine, when the first program is a
program downloaded from another device, the second
virtual machine (i) including second virtual hardware
and a second OS having only part of the function of the
first OS and (ii) executing the first program, said deter-
mining being performed by the first virtual machine;
sending, to the virtual machine managing unit when an OS
process inexecutable on the second OS is requested by
the first program, an OS process request for requesting
the first virtual machine to execute the OS process, said
sending being performed by the second virtual machine;
requesting the first virtual machine to execute the OS pro-
cess, when the virtual machine managing unit receives

10

15

20

25

30

35

40

45

50

55

60

65

36

the OS process request from the second virtual machine,
said requesting being performed by the virtual machine
managing unit; and
determining, based on information indicating, among
functions of the information processing device, a func-
tion prohibiting the second virtual machine from
requesting the first virtual machine to execute the OS
process, whether or not it is possible for the second
virtual machine to request the first virtual machine to
execute the OS process, the information being held by
the information processing device, and said determining
of whether or not it is possible being performed by the
virtual machine managing unit,
when it is determined that it is possible for the second
virtual machine to request the first virtual machine to
execute the OS process, the first virtual machine is
requested to execute the OS process in said requesting,

said requesting includes determining whether or not the OS
process requested by the first program is executable by a
device driver software program included in the second
virtual machine,

when the OS process requested by the first program is

executable by the device driver software program, the
OS process requested by the first program is executed
within the second virtual machine, and

when the OS process requested by the first program is not

executable by the device driver software program, the
first virtual machine is requested to execute the OS pro-
cess requested by the first program.

12. A non-transitory computer-readable recording medium
for use in a computer, the recording medium having a com-
puter program recorded thereon for causing the computer to
execute the virtual machine creation method according to
claim 11.

13. A semiconductor integrated circuit having a plurality of
virtual machines, said semiconductor integrated circuit com-
prising

a virtual machine managing unit configured to manage the

virtual machines,

wherein said virtual machine managing unit includes an

application virtual machine (VM) creating unit config-
ured to create a virtual machine for executing a program,

a first virtual machine includes first virtual hardware and a

first operating system (OS), and determines whether a
first program is to be executed on the first virtual
machine or to be executed on a second virtual machine,
the first program being executable on the first virtual
machine, and the first virtual machine being one of the
virtual machines,

said application VM creating unit is configured to create

the second virtual machine, when the first virtual
machine determines that the first program is to be
executed on the second virtual machine,

when the first program is a program downloaded from

another device, the first virtual machine determines that
the first program is to be executed on the second virtual
machine,

the second virtual machine includes second virtual hard-

ware and a second OS having only part of functions of
the first OS, and executes the first program,

the second virtual machine includes an OS process request-

ing unit configured to, when an OS process inexecutable
on the second OS is requested by the first program, send,
to said virtual machine managing unit, an OS process
request for requesting the first virtual machine to execute
the OS process,

US 9,081,596 B2

37

said virtual machine managing unit further includes:

an OS process request control unit configured to request
the first virtual machine to execute the OS process, when
said virtual machine managing unit receives the OS pro-
cess request from the second virtual machine; and

a policy managing unit configured to hold information
indicating, among functions of said information pro-
cessing device, a function of prohibiting the second vir-
tual machine from requesting the first virtual machine to
execute the OS process, and determine, based on the
information, whether or not it is possible for the second
virtual machine to request the first virtual machine to
execute the OS process,

said OS process request control unit is configured to
request the first virtual machine to execute the OS pro-
cess, when said policy managing unit determines that it
is possible for the second virtual machine to request the
first virtual machine to execute the OS process,

said OS process requesting unit is configured to determine
whether or not the OS process requested by the first
program is executable by a device driver software pro-
gram included in the second virtual machine,

when the OS process requested by the first program is
executable by the device driver software program, the
OS process requested by the first program is executed
within the second virtual machine, and

when the OS process requested by the first program is not
executable by the device driver software program, the
first virtual machine is requested to execute the OS pro-
cess requested by the first program.

#* #* #* #* #*

10

15

20

25

30

38

